Universitatea "Dunărea de Jos" din Galați Școala doctorală de Inginerie mecanică

TEZĂ DE DOCTORAT

CONTRIBUȚII PRIVIND OPTIMIZAREA STRUCTURILOR DE NAVĂ

CONTRIBUTIONS ON SHIP STRUCTURES OPTIMIZATION

REZUMAT

Doctorand,

Ing. Anișoara-Gabriela Buțurcă (Cristea)

Conducător științific, Prof. univ. dr. Ing. Costel Iulian Mocanu

Seria I6: Inginerie mecanică Nr. 20

GALAŢI

2014

Universitatea "Dunărea de Jos" din Galați Școala doctorală de Inginerie mecanică

TEZĂ DE DOCTORAT

CONTRIBUȚII PRIVIND OPTIMIZAREA STRUCTURILOR DE NAVĂ

CONTRIBUTIONS ON SHIP STRUCTURES OPTIMIZATION

REZUMAT TEZĂ DE DOCTORAT

Doctorand

Ing. Anișoara-Gabriela Buțurcă (Cristea)

Conducător științific,

Prof univ.dr.ing. Costel Iulian Mocanu

Referenți stiințifici

Prof univ.dr.ing. Anton Hadăr Prof univ.dr.ing. Horia Gheorghiu Prof univ.dr.ing. Leonard Domnişoru

Seria I6: Inginerie mecanică Nr. 20 GALAȚI 2014 Seriile tezelor de doctorat sustinute public în UDJG începând cu 1 octombrie 2013 sunt: Domeniul **\$TIINȚE INGINEREȘTI** Seria I 1: Biotehnologii Seria I 2: Calculatoare și tehnologia informației Seria I 3. Inginerie electrică Seria I 4: Inginerie industrială Seria I 5: Ingineria materialelor Seria I 6: Inginerie mecanică Seria I 7: Ingineria produselor alimentare Seria I 8: Ingineria sistemelor Domeniul **ŞTIINȚE ECONOMICE** Seria E 1: Economie Seria E 2: Management Domeniul **ŞTIINȚE UMANISTE** Seria U 1: Filologie- Engleză Seria U 2: Filologie- Română Seria U 3: Istorie

ROMÂNIA Universitatea ,,Dunărea de Jos" din Galați

Către

Universitatea "Dunărea de Jos" din Galați vă face cunoscut că, în data de 17.10.2014, ora 9.00, în Bazinul de Carene al Facultății de Arhitectură Navală, va avea loc susținerea publică a tezei de doctorat intitulată: "CONTRIBUȚII PRIVIND OPTIMIZAREA STRUCTURILOR DE NAVĂ", elaborată de doamna/domnul BUŢURCĂ ANIȘOARA-GABRIELA (CRISTEA), în vederea conferirii titlului științific de doctor în domeniul de doctorat Inginerie mecanică.

Comisia de doctorat are următoarea componență :

1. Președinte	Prof.univ.dr.ing. Gabriel ANDREI Universitatea "Dunărea de Jos" din Galati
7 Conducător de destorat	Profunity dring Costel-Julian MOCANI
2. Conducator de doctorat	Universitatea "Dunărea de Jos" din Galați
3. Referent oficial	Prof.univ.dr.ing. Anton HADĂR
	Universitatea POLITEHNICA din București
4. Referent oficial	Prof.univ.dr.ing. Horia GHEORGHIU
	Universitatea POLITEHNICA din București
5. Referent oficial	Prof.univ.dr.ing. Leonard DOMNIŞORU
	Universitatea "Dunărea de Jos" din Galați

Cu această ocazie vă transmitem rezumatul tezei de doctorat, și vă invităm să participați la susținerea publică. În cazul în care doriți să faceți eventuale aprecieri sau observații asupra conținutului lucrării, vă rugăm să le transmiteți în scris pe adresa universității, str. Domnească nr. 47, 800008 Galați, Fax 0236 / 461353, e-mail rectorat@ugal.ro.

Str. Domnească nr.47, cod poștal 800008, Galați, România, Tel.: +40 336 130 109, Fax: +40 236 461 353, E-mail: rectorat@ugal.ro, Web: www.ugal.ro

CUPRINS

	Pg. teză	Pg.
Prefată	leza	rezumat
Introducere		
Capitolul 1		
Stadiul actual privind problematica optimizării structurilor navale	1	1
1.1 Generalități referitoare la optimizarea structurilor de navă în vederea măririi		
capacității de transport	2	1
1.2 Formularea problemei de optimizare	4	2
1.3 Domeniul admisibil – utilizabil	5	2
1.4 Condițiile Kuhn Tucker	5	2
1.5 Convergența către optim	6	3
1.6 Metode utilizate în optimizarea structurilor de nave	7	3
1.7 Procedura generală de optimizare structurală	8	3
1.7.1 Definirea funcției obiectiv în optimizarea structurală	8	3
1.7.2 Formularea restricțiilor în optimizarea structurală	9	4
1.7.2.1 Restricții de rezistență	9	4
1.7.2.2 Restricții nelegate de rezistență	10	4
1.7.3 Analiza starilor limita in optimizarea structurala	10	4
	11	4
Capitolul 2	13	5
Analizele numerice și experimentale în regim static pe model redus la scară, al		
structurii dubiului fund in vederea stabilirii metodologiei de abordare a		
21 Utilizarea Metodei Elementelor Finite în analiza stării de tensiune care apare în	14	5
structura corpului navelor. Metodologie de abordare	14	5
2.1.1 Model redus la scară sudat continuu (SC)	17	7
2.1.2 Model redus la scară sudat discontinuu (SD)	23	10
2.2 Modelări experimentale pe model redus la scară	27	13
2.2.1 Modelări folosind metoda Tensometriei Electrice Rezistive (TER)	29	14
2.2.2 Modelări folosind Metode Optice (MO)	30	15
2.3 Concluzii	31	16
Capitolul 3	37	19
Analiza stărilor de tensiuni care apar la solicitarea statică în structura în		
mărime reală a dublului fund la tancul chimic de 8000 tdw. Comparații și		
concluzii referitoare la validitatea metodologiei stabilite în Capitolul 2		
3.1 Descrierea și realizarea modelului numeric pentru nava în mărime reală	38	19
3.1.1 Dimensiuni și caracteristici principale ale navei în mărime reală	38	19
3.1.2 Discretizarea structurii studiate	39	20
3.1.3 Condiții de margine și încărcări	41	21
3.2 Modelarea numerică a structurii dublului fund pentru nava în mărime reală.	41	21
Analiza rezultatelor 2.2.1 Structure dublului fund de la neve în mărime reală sudetă continuu (SC)	41	21
3.2.1 Structura dublului fund de la nava în mărime reală sudată discontinuu (SC)	41	21
3.3. Influenta hordurării cu plathenzi în jurul decupărilor tehnologice asupra etării de	4∠ ∕\2	22
tensiune la nava în mărime reală	43	
3.3.1 Structura dublului fund de la nava în mărime reală sudată continuu (SC)	43	22

3.3.2 Structura dublului fund de la nava în mărime reală sudată discontinuu (SD)	44	23
3.4 Analiza rezultatelor modelărilor numerice efectuate la nava în mărime reală	45	23
3.5 Concluzii referitoare la structura în mărime reală a dublului fund	49	25
Capitolul 4	54	27
Optimizarea structurii dublului fund al navei tanc chimic de 8000 tdw. Stabilirea		
metodologiei de optimizare		
4.1 Generalități referitoare la optimizarea structurilor de navă	55	27
4.2 Algoritmul optimizării constructiv - funcționale prin Metoda Elementului Finit	59	27
4.3 Modelarea numerică a structurii dublului fund pentru nava în mărime reală.	62	29
Analiza rezultatelor		• •
4.3.1 Structura dublului fund de la nava în márime reală sudată continuu (SC)	62	29
4.3.2 Structura dublului fund de la nava in marime reala sudata discontinuu (SD)	63	29
4.4 Influența bordurarii decuparilor tehnologice asupra starii de tensiune la nava in	64	30
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61	20
4.4.1 Structura dubidiui fund de la nava in manine reala optimizata sudata continuu (SC)	04	30
442 Structura dublului fund de la nava în mărime reală optimizată sudată	65	30
discontinuu (SD)	0.5	50
4.5 Analiza rezultatelor modelărilor numerice efectuate la nava în mărime reală	66	31
optimizată		_
4.6 Concluzii referitoare la structura în mărime reală optimizată a dublului fund	69	32
Capitolul 5	73	33
Calcule de rezistență la solicitări variabile		
5.1 Generalități despre oboseală și calculul la oboseală	74	33
5.1.1 Cicluri de solicitare și caracteristicile lor	75	33
5.1.2 Factorii care influențează rezistența la oboseală	76	34
5.2 Schematizări ale diagramelor privind calculul de rezistență la oboseală	76	34
5.2.1 Diagrame de tip Haigh	77	34
5.2.2 Schematizări ale diagramei Haigh	77	34
5.2.3 Schematizarea diagramei Smith	78	35
5.2.4 Calculul coeficientului de siguranță pe baza schematizării Soderberg	79	35
5.2.5 Calculul coeficientului de siguranță pe baza schematizării Serensen	79	36
5.3 Fenomenul degradării mecanice. Apariția și propagarea fisurilor	80	36
5.3.1 Criteriul Palmgren – Miner	81	36
5.3.2 Criteriul Grower	82	37
5.3.3 Criteriul Corten-Dolan	82	37
5.4 Noțiuni introductive în teoria ruperii	82	38
5.4.1 Teorii privind calculul la rupere	84	38
5.4.1.1 Teoria lui Griffith	84	38
5.4.1.2 Teoria lui Orowan	85	39
5.4.1.3 Teoria lui Irwin	85	39
5.4.2 Moduri de rupere – Moduri de solicitare	86	39
5.4.3 Parametrii de calcul în Mecanica Ruperii	86	39
5.5 Concluzii	88	40
Capitolul 6	91	41
Analize comparative pentru structura optimizată și neoptimizată a structurii		
dublului fund		
6.1 Generalități	92	41
6.2 Determinarea factorului de concentrare a tensiunii cu ajutorul MEF	93	42
6.3 Apariția și extensia fisurilor în zona decupărilor tehnologice din întăriturile Dublului Fund (DF). Determinarea parametrilor specifici propagării fisurilor	103	48

6.4 Procesarea rezultatelor numerice în cazul analizei producerii și extensiei fisurii la	107	51
structurile de Dublu Fund. Analiza 2D	111	50
	111	52
Capitolul /	113	53
Comportarea elasto - plastică a structurilor de nave. Comparații între structurile		
optimizate și neoptimizate	114	50
7.1 Considerente teoretice	114	53
7.1.1 Mecanica medillor continue	114	53
7.1.2 Cinematica deformarii corpurilor elastice	115	54
7.1.3 Ecuații de conservare	116	55
7.1.4 Fizica mecanismului de rupere	117	55
7.1.5 Modelul de rupere Johnson - Cook	118	55
7.2 Analiza neliniară a structurii de dublu fund	119	56
7.2.1 Crearea geometriei și împortarea în mediul Abaqus CAE	119	56
7.2.2 Definirea proprietăților de material	120	56
7.2.3 Discretizarea structurilor studiate	120	57
7.2.4 Definirea condițiilor de margine și a încărcărilor	121	57
7.2.5 Rezultate	122	57
7.2.5.1 Structura dublu fund cu decupări tehnologice nebordurate	122	57
7.2.5.2 Structura dublu fund cu decupări tehnologice bordurate	124	60
7.3 Concluzii privind comportarea elasto - plastică a structurii dublului fund	126	61
Capitolul 8	128	62
Contribuții și concluzii finale. Perspective de utilizare a rezultatelor. Direcții		
viitoare de cercetare	100	()
	129	62
8.2 Direcții viitoare de cercetare	131	64
Bibliografie	134	66
Lista principalelor notații	142	
Lista figurilor	145	
Lista tabelelor	150	
Curriculum Vitae	153	69
Lista lucrărilor publicate	156	71

CONTENTS

	Pg. teză	Pg. rezumat
Foreword		
Introduction		
Chapter 1 Current state of the problems related to the optimization of ship	1	1
structures		
1.1 General information on the optimization of ship structures in order to	2	1
Increase the capacity of transportation	1	r
1.2 Formulation of the problem of optimization 1.3 Permissible - usable coverage	4	2
1.4 Kuhn Tucker Conditions	5	2
1.5 Convergence to the optimal state	6	$\frac{2}{3}$
1.6 Methods used in the optimization of ship structures	7	3
1.7 General procedure for structural optimization	8	3
1.7.1 Definition of the objective function in structural optimization	8	3
1.7.2 Formulation of the restrictions in structural optimization	9	4
1.7.2.1 Limitations of resistance	9	4
1.7.2.2 Limitations not related to resistance	10	4
1.7.3 Analysis of limit states in structural optimization	10	4
1.8 Conclusions	11	4
Chapter 2	13	5
Numerical and experimental analysis, under static conditions on a reduced		
scale model, of the double bottom structure in order to establish the		
2.1 Use of finite element method in analyzing the indirect stress that occurs in the hull	14	5
structure. Approaching methodology	14	5
2.1.1 Line welding (LW) of a scale model	17	7
2.1.2 Intermittent welding (IW) of a scale model	23	10
2.2 Experimental modeling on a reduced scale model	27	13
2.2.1 Modeling using the Electric Resistive Tensometry method (ERT)	29	14
2.2.2 Modeling using optical methods (OM)	30	15
2.3 Conclusions	31	16
Chapter 3	37	19
Analysis of indirect stress occurring at static loading in the actual structure		
of the double bottom at the chemical tank of 8,000 dwt. Comparisons and		
2 1 Description and implementation of the numerical model for the real sized ship	20	10
3.1.1 Dimensions and main characteristics of the real sized ship	20 20	19
3.1.2 Digitization of the structure studied	30	20
3 1 3 Boundary conditions and loads	73 71	20
3.2 Numerical modeling of double bottom structure for the real-sized ship. Analysis of	41 41	21
results	71	<i>∠</i> 1
3.2.1 Structure of the double bottom for the real-sized ship with line welding (LW)	41	21
3.2.2 Structure of the double bottom for the real-sized ship with intermittent welding (IW)	42	22

3.3 The influence of platband flanging around technological cutouts on the indirect	43	22
3.3.1 Structure of the double bottom for the real sized ship with line welding (LW)	12	22
3.3.2 Structure of the double bottom for the real-sized ship with intermittent	43	22
welding (IW)	44	23
3.4 Analysis of the results of numerical modelling carried out for the real-sized ship	45	23
3.5 Conclusions regarding the real-sized structure of the double bottom	49	25
Chapter 4	54	27
Double bottom structure optimization for a chemical tanker of 8,000 dwt.	-	
Setting out the optimization methodology		
4.1 General information on the optimization of ship structures	55	27
4.2 Algorithm for constructive and functional optimization using Finite Element	59	27
Method		
4.3 Numerical modeling of double bottom structure for the real-sized ship. Analysis of	62	29
results 4.2.1 Structure of the double better for the real sized chip with line wolding (LM/)	(\mathbf{c})	20
4.3.1 Structure of the double bottom for the real sized ship with intermittent	62	29
4.5.2 Structure of the double bottom for the real-sized ship with intermittent	63	29
4.4 The influence of flanging the technological cutouts on the indirect stress for the	64	30
optimized real-sized ship	04	50
4.4.1 Structure of the double bottom for the optimized real-sized ship with line	64	30
welding (LW)		
4.4.2 Structure of the double bottom for the optimized real-sized ship with	65	30
intermittent welding (IW)		
4.5 Analysis of the results of numerical modelling carried out for the optimized real-	66	31
sized snip	60	22
4.0 Conclusions on the optimized real-sized structure of the double bottom	09 72	32 22
Chapter 5	/3	55
Calculation of the resistance at varying loads		
5.1 Overview of fatigue and fatigue calculation	74	33
5.1.1 Load cycles and their characteristics	75	33
5.1.2 Factors influencing fatigue endurance limit	76	34
5.2 Oversimplification of diagrams for the calculation of fatigue endurance limit	76	34
5.2.1 Haigh type diagrams	77	34
5.2.2 Oversimplification of Haigh diagram	77	34
5.2.3 Smith diagram oversimplification	78	35
5.2.4 Calculation of safety coefficient based on Soderberg oversimplification	79	35
5.2.5 Calculation of safety coefficient based on Serensen oversimplification	/9	36
5.3 Mechanical degradation phenomenon. The emergence and propagation of cracks	80	36
5.3.1 The Paimgren – Miner Criterion	81	36
5.3.2 Grower Chilehon 5.3.2 Certen Delen Criterien	82	3/
5.3.3 Conten-Dolan Chitenon	82	3/
5.4 Introduction to the theory of fracture	82	38
5.4.1 Theones regarding the calculation of fracture	84	38
5.4.1.2 Orowon's theory	84 0 <i>5</i>	38
5.4.1.2 Urowall 5 lifeory $5.4.1.3$ invines theory	83 85	<u>39</u>
5.4.2 Modes of fracture Stress modes	03 06	39 20
5.4.2 mouse of mature – succes mouse 5.4.3 Parameters of calculation in Fracture Mechanics	00 86	20
5.5 Conclusions	00 88	39 40
	00	40

Chapter 6	91	41
Comparative analysis for optimized and unoptimized structure of double		
bottom	02	4.1
6.2 Determination of the stress concentration factor using the finite element method	92	41
(FEM)	93	42
6.3 The emergence and propagation of cracks in the area of technological cutouts in	103	48
the strongholds of the double bottom (DB). Determination of crack propagation	105	10
specific parameters		
6.4 Processing numerical results of the analysis of emergence and propagation of	107	51
cracks in double bottom structure. 2D analysis		
6.5 Conclusions		52
Chapter 7	113	53
Elastic-plastic behavior of ship structures. Comparisons between optimized		
and non-optimized structures	114	52
7.1 Theoretical considerations	114	53 52
7.1.2 Kinematics of elastic bodies deformation	114	55 54
7.1.2 Conservation equations	115	54
7.1.7 Conservation equations	110	55
7 1 5 Johnson - Cook fracture model	117	55
7 2 Nonlinear analysis of double bottom structure	110	56
7.2 1 Creating and importing geometry in the Abagus CAE environment	119	56
7 2 2 Definition of material properties	120	56
7.2.3 Digitization of the structures studied	120	57
7.2.4 Definition of boundary conditions and loads	120	57
7.2.5 Results	122	57
7.2.5.1 Double bottom structure with technological non-flanged cutouts	122	57
7.2.5.2 Double bottom structure with technological flanged cutouts	124	60
7.3 Conclusions on the elastic-plastic behaviour of double bottom structure	126	61
Chapter 8	128	62
Contributions and final conclusions. Prospects of the use of results. Future		
lines of research		
8.1 Contributions and final conclusions	129	62
8.2 Future lines of research	131	64
Bibliography	134	66
List of main notations	142	
List of Figures	145	
List of Tables	150	
Curriculum Vitae	153	69
List of published works	156	71

Mulţumiri

Conceperea și elaborarea unei teze de doctorat este posibilă numai cu condiția unei îndrumări științifice de calitate.

Cu ocazia finalizării tezei, îmi exprim pe această cale recunoștința și respectul față de cei care mi-au oferit îndrumare, susținere și înțelegere în această perioadă importantă din cariera mea profesională și țin să le exprim sincerele mele mulțumiri.

Pe întreg parcursul acestei teze, am beneficiat de sprijinul permanent al domnului **Prof. Dr.** *Ing. Costel Iulian MOCANU*, conducătorul științific al lucrării, căruia îi aduc, pe această cale, cele mai sincere mulțumiri pentru pentru îndrumarea competentă și recomandările valoroase făcute cu înalt profesionalism, pentru exigența manifestată față de lucrare, pentru motivarea mea în depunerea eforturilor necesare, dar mai ales pentru răbdarea și înțelegerea arătată față de diversele probleme apărute pe toată durata elaborării tezei.

Mulţumiri şi recunoştinţa mea deosebită către Prof. Univ. Dr. Ing. Leonard DOMNIŞORU, Prof. Univ. Dr. Ing. Mircea MODIGA şi către regretatul Prof. Univ. Dr. Ing. Dumitru DRAGOMIR pentru îndrumarea pe care mi-au oferit-o pe tot parcursul realizării tezei.

Doresc să mulţumesc întregului colectiv de cadre didactice din cadrul Facultăţii de Arhitectură Navală precum şi tuturor membrilor comisiilor de examinare pentru observaţiile şi recomandările făcute cu ocazia prezentării referatelor de la doctorat, dăruindu-mi cu generozitate din cunoştinţele lor, oferindu-mi astfel un ajutor considerabil în realizarea cercetărilor.

Aduc mulţumirile mele membrilor Comisiei de Evaluare şi Susţinere a tezei, formată din distinşi specialişti, pentru răbdarea cu care au analizat şi evaluat prezenta teză de doctorat precum şi pentru recomandările şi aprecierile formulate.

Nu în ultimul rând, adresez calde mulţumiri întregii mele familii şi în mod special soţului meu, ing. George Alexandru Cristea, pentru dragostea, sprijinul, răbdarea şi încrederea acordată. Toată dragostea mea fiului meu, Dragoş George, pentru răbdare şi necondiţionată înţelegere.

În încheiere, mulțumesc tuturor profesorilor mei, care mi-au dăruit cu dărnicie din cunoștințele lor și care au clădit în mine dragostea și respectul pentru muncă, insuflându-mi curiozitatea vie de a căuta mereu adevărul.

Ing. Anişoara-Gabriela BUŢURCĂ (CRISTEA)

Introducere

Pornind de la cuvântul *optim* ce derivă din latinescul *optimus* care înseamnă cel mai bun sau cel foarte bun, sau care asigură cea mai mare eficiență economică, lucrarea poate fi justificată prin prisma încercării obținerii unei motivații, pentru o problemă dată într-un context cât mai bine definit.

Problema de optimizare în domeniul ingineriei mecanice se bazează pe cunoașterea proprietăților mecanice ale materialelor și a acțiunilor exterioare în scopul determinării configurației geometrice și a stării lor mecanice. În domeniul construcțiilor, necesitatea introducerii procedeelor de optimizare apare în numeroase ramuri de activitate.

Problema de optimizare bazată pe un model matematic reprezintă un instrument de proiectare așa cum în statica construcțiilor metoda eforturilor sau metoda deplasărilor sunt instrumente de analiză structurală a comportării structurilor deformabile.

Pentru rezolvarea problemei de optimizare este necesară cunoașterea unor metode adecvate de calcul. Evoluția metodelor de optimizare este stimulată de existența calculatoarelor, a necesității îmbunătățirii condițiilor de funcționare și exploatare simultan cu cerințele de reducere a dimensiunilor și greutății construcțiilor.

Automatizarea procesului de optimizare implică rezolvarea următoarelor trei mari probleme: - *Analiza eficientă a structurii* ce constă în calculul răspunsului principal (tensiuni, deplasări etc.) al tuturor structurilor și elementelor de structură;

- *Evaluarea stărilor limită* constă în determinarea capabilității structurii pentru un set de valori dimensionale date a elementelor componente, pentru un material cu caracteristici mecanice cunoscute;

- *Optimizarea propriu-zisă* constă în aplicarea unei metode sistematice de determinare a dimensiunilor elementelor componente ale structurilor în așa fel încât să se realizeze un proiect optim pentru obiectivul ales (greutate, preț de cost) cu satisfacerea tuturor restricțiilor.

În calculele de optimizare structurală se consideră că modelul de analiză al structurii este stabilit, iar optimizarea propriu-zisă, reprezentând o serie de metode și tehnici de calcul, operează asupra modelului structurii, conducând în final la optimizarea formei și dimensiunilor acesteia. Prin urmare, optimizarea structurală în proiectarea inginerească este un proces de calcul prin care se definește un anumit sistem (structura) sub aspectul formei și dimensiunilor, în timp ce prin analiza structurală se urmărește determinarea răspunsului modelului unui sistem (structură), supus acțiunii unor încărcări exterioare.

Proiectarea optimală a structurilor reprezintă un proces de reproiectare automată prin care se încearcă minimizarea sau maximizarea unei cantități specifice (funcție de obiectiv), supusă unor limite sau restricții sub aspectul răspunsului, folosind mijloacele matematice raționale pentru evidențierea proiectării îmbunătățite.

Importantă este însă încercarea stabilirii ponderii influențelor diferiților factori asupra structurilor navale pentru a se putea cerceta în cunoștință de cauză influențele acestora în vederea optimizării.

Lucrarea de față își propune să ofere soluții de optimizare a structurii de rezistență a dublului fund la tancul chimic de 8000 tdw, având în vederea, siguranța și eficiența în exploatare cât și prelungirea perioadei de funcționare a acestui tip de navă.

Pornind de la necesitatea îmbunătățirii permanente a calității structurilor de nave, lucrarea prezintă modalități concrete de optimizare a structurilor de rezistență prin analiza stărilor de tensiuni ce apar la acest tip de navă, folosind datele analizei numerice și experimentale. În conceperea lucrării s-a avut în vedere reducerea consumului de material și în același timp mărirea capacității de transport a navei, o mai bună rezistență la transportul mărfii și deci, o creștere a rentabilități acesteia.

Motivația alegerii acestei teme este că deși s-au efectuat nenumărate studii ce au în vedere optimizarea structurilor de nave, totuși rămân foarte multe oportunități neabordate suficient. Pe parcursul studiului care a stat la baza acestei lucrări, s-au descoperit noi modalități de abordare a subiectului optimizării structurilor și în directă corelare s-au elaborat noi metodologii de verificare a structurilor proiectate și optimizate.

Din punct de vedere al *încadrării în preocupările naţionale si internaţionale* este evident că problematica optimizării ocupă unul dintre cele mai importante locuri. Echipe întregi de cercetători lucrează la a limita greutățile unităților de transport în vederea măririi cantităților de marfă transportată. În același timp prin reducerea greutăților unităților de transport se ajunge la o mai bună utilizarea a resurselor de materii prime.

Obiectivele urmărite sunt cercetarea și încercarea de a descoperi noi căi de optimizare și de a propune noi principii de optimizare a structurilor navale, care prin raportarea acestora la cercetările existente să se constituie într-un pas înainte, deplasând limitele cunoașterii puțin mai departe. Deoarece însuși procesul de optimizare nu conduce la rezolvarea celorlalte probleme de rezistență a structurilor de navă, cercetarea efectuată în lucrarea de față caută să găsească metodologii de calcul mai eficiente, rapide și cu bune rezultate pentru calculul în elastic și plastic al structurilor optimizate.

Aria de aplicabilitate se referă la toate structurile navale. S-a ales cercetarea și optimizarea dublului fund din motive obiective legate de posibilitatea validărilor rezultatelor modelărilor numerice prin modelări experimentale. Rezultatele obținute pot fi extinse apoi la întregul corp al navei.

Obiectivele propuse pentru rezolvare în cadrul cercetării sunt legate, după cum spune și titlul, de preocupările cercetătorilor în domeniul structurilor navale. Pe lângă optimizarea propriuzisă se vor efectua modelări numerice și experimentale pentru verificarea structurii optimizate. Se vor stabili metodologii noi de abordare atât numerică cât și experimentală pentru realizarea acestui deziderat.

Metoda de cercetare abordată combină elementele teoretice cu cele experimentale. În cadrul lucrării se vor pune în evidență o serie de metode de optimizare care vin în întâmpinarea proiectantului, uşurându-i secvența decizională. Validările experimentale s-au efectuat folosind metode moderne prin tensometrie electrică rezistivă și metode optice.

Contribuțiile în plan teoretic, numeric și experimental sunt importante, interesante, originale, cu aplicabilitate imediată și deschizătoare de noi direcții de cercetare.

Gradul de atingere al obiectivelor este de asemenea realizat în cea mai mare proporție, însă rămân deschise oportunități în vederea cercetărilor ulterioare.

Rezultatele tezei se pot practica în munca de proiectare și cercetare - dezvoltare a inginerilor, în încercarea de a optimiza structurile mecanice atât în domeniul naval cât și-n alte domenii.

Organizarea generală a tezei de doctorat

Prezenta teză de doctorat este rezultatul unor studii de documentare materializate în cercetări teoretice și experimentale efectuate de către autoare în vederea realizării obiectivului propus prin alegerea temei și a avut drept scop aducerea unor contribuții proprii la îmbunătățirea performanțelor privind optimizarea structurilor de navă.

Pentru atingerea obiectivelor propuse, teza de doctorat a fost organizată în opt capitole, aranjate într-o structură logică, care să pună în valoare cercetarea științifică și a elementelor de noutate, care să conducă la îndeplinirea scopului propus.

În Capitolul 1, intitulat "Stadiul actual privind problematica optimizării structurilor navale" sunt prezentate generalități privind optimizarea structurilor de navă în vederea măririi capacității de transport, urmând a fi puse în evidență principalele aspecte ale optimizării, precum și metodele matematice de actualitate utilizate.

Capitolul 2, intitulat "Analizele numerice și experimentale în regim static pe model redus la scară al structurii dublului fund în vederea stabilirii metodologiei de abordare a optimizării", începe prin prezentarea teoretică a metodelor analizate în vederea determinării stării de tensiune care apare în modelul analizat în diverse variante tehnologice. Au urmat analize experimentale pe modelul redus la scară. Cercetările experimentale s-au efectuat pe 3 structuri de dublu fund cu raze de racordare a decupărilor de 15, 20, 25 mm.

În Capitolul 3, intitulat "Analiza stărilor de tensiuni care apar la solicitarea statică în structura în mărime reală a dublului fund la tancul chimic de 8000 tdw. Comparații și concluzii referitoare la validarea metodologiei stabilite în Capitolul 2", este prezentată descrierea și realizarea modelului numeric pentru nava în mărime reală, iar pentru determinarea stării de tensiune din structura dublului fund s-au efectuat o serie întreagă de modelări numerice pe structuri sudate continuu (SC) și discontinuu (SD), care au fost validate prin proiectarea și executarea unui stand experimental al structurii dublului fund redus la scară prezentat în cadrul Capitolului 2.

Capitolul 4, denumit "Optimizarea structurii dublului fund al navei tanc chimic de 8000 tdw. Stabilirea metodologiei de optimizare", începe prin prezentarea unor aspecte teoretice privind optimizarea structurilor de navă, precum și prezentarea algoritmului optimizării constructiv funcționale prin Metoda Elementului Finit. Rolul important în optimizarea structurii de dublu fund l-a avut atât influenta grosimii si a razei de racordare a decupării, precum si influenta bordurării cu platbenzi în jurul decupărilor tehnologice, asupra stării de tensiune la nava în mărime reală. Aprecierea stării de tensiune pentru situațiile prezentate se realizează comparând tensiunile care au apărut în structura dublului fund în diverse situații de încărcare si pentru diverse soluții constructive.

În **Capitolul 5**, intitulat *"Calculul de rezistență la solicitările variabile"*, sunt prezentate aspecte teoretice fenomenului de oboseală, sunt puse în evidență teoriile privind calculul la rupere, precum și definirea modului de apariție și propagare a fisurilor.

lar, în **Capitolul 6**, intitulat *"Analize comparative pentru structura optimizată și neoptimizată a structurii dublului fund"*, sunt prezentate modurile de poziționare a concentratorilor de tensiune, precum și determinarea factorilor de concentrare pentru structura analizată. Deasemenea a fost pusă în evidență apariția și propagarea fisurilor în zona decupărilor tehnologice din întăriturile dublului fund (DF), precum și determinarea parametrilor specifici propagării fisurilor.

Capitolul 7, denumit *"Comportarea elasto - plastică a structurilor de nave. Comparații între structurile optimizate și neoptimizate",* se ocupă cu prezentarea generală a comportării elasto - plastice a materialelor, precum și cu comparațiile obținute în această cercetare la cele două structuri analizate.

În **Capitolul 8**, intitulat *"Contribuții și concluzii finale. Perspective de utilizarea ale rezultatelor. Direcții viitoare de cercetare",* sunt prezentate contribuțiile autoarei, concluziile la care s-a ajuns, perspectivele de folosire ale rezultatelor și direcțiile noi de cercetare care se conturează în urma acestei lucrări.

Introduction

Starting from the word **optimal** derived from the Latin **optimus** which means the best or the very best, or which provides the greatest economic efficiency, this work can be justified in the light of the attempt to obtain motivation, for a given problem in the best defined context.

The optimization problem in mechanical engineering is based on the knowledge of the mechanical properties of materials and external actions in order to determine their geometric configuration and their mechanical condition. In the construction sector, the need to introduce processes of optimization occurs in many branches of activity.

The optimization problem based on a mathematical model is a design tool as in the construction statics the tension method or the displacement method are tools for structural analysis of the behavior of deformable structures.

To solve the optimization problem it is necessary to know the appropriate methods of calculation. The evolution of the optimization methods is stimulated by the existence of computers, of the need to improve the operation and working conditions simultaneously with the requirements of size and weight reduction of the construction.

The automation of the process of optimization involves solving the following three main problems:

- *Efficient analysis of the structure* consisting of the calculation of the principal response (tension, displacement, etc.) of all structures and structural elements;

- *The evaluation of limit states* consisting in the calculation of the structure capability for a given set of dimensional values of the component elements, for a material with known mechanical characteristics;

- *Actual optimization* consisting in the application of a systematic method for determining the dimensions of the component elements of structures so as to achieve an optimal design for a particular objective (weight, cost price) satisfying all constraints.

In the calculations of structural optimization it is considered that the structure analysis model is established, and actual optimization, representing a number of calculation methods and techniques, operates on the model of the structure leading ultimately to the optimization of its form and dimensions. Therefore, structural optimization in engineering design is a calculation process which defines a particular system (structure) in terms of shape and dimensions, while the structural analysis aims to determine the response of a model of a system (structure) under the action of external loads.

The optimal design of structures represents an automatic redesign process which seeks to minimize or maximize a specific quantity (depending on the objective), subject to limits or restrictions in terms of response, using rational mathematical means in order to highlight the improved design.

However, the importance lays in the attempt to establish the weight of influence of various factors on ship structures so as to be able to research, having the necessary information, their influences with a view to optimizing.

This paper aims to provide solutions for optimizing the structural frame of the double bottom of a chemical tanker of 8,000 dwt, considering safety and operational efficiency as well as the extension of the period of operation of this type of ship.

Starting from the necessity to permanently improve the quality of ship structures this paper presents concrete ways to optimize the structural frames by analyzing tensions that arise in this type of vessel, using data from numerical and experimental analysis. In developing this paper the following were taken into consideration: the reduction of material consumption and, at the same time, the increase in the transport capacity of the vessel, a better resistance to the transportation of goods and, therefore, an increased profitability.

The reason for choosing this topic is that, although many studies have been conducted on the optimization of ship structures, there are still many opportunities not sufficiently addressed. During the study which was the basis of this paper, new ways to approach the subject of optimization of structures were discovered and new methodologies for verification of designed and optimized structures were developed in direct correlation.

In terms of *classification within national and international concerns* it is obvious that the optimization problem occupies one of the most important places. Whole teams of researchers work to limit the weights of transport units in order to increase the quantity of goods transported. At the same time, by reducing the weights of the transport units a better use of raw material resources is obtained.

The objectives pursued are the research and attempt to discover new ways for optimization and to propose new principles of optimization for ship structures, which compared to the existing research, are meant to be a step forward, moving the boundaries of knowledge a little further. Since the optimization process itself does not lead to solving other problems of the resistance of ship structures, the research carried out in this paper seeks to find efficient calculation methodologies, which are quick and with good results for the calculation of elastic and plastic optimized structures.

The scope refers to all marine structures. The research and optimization of double bottom were chosen due to objective reasons related to the possibility of validation of the results of numerical modeling through experimental modeling. Then, the results obtained can be expanded to the entire hull of the ship.

The objectives proposed for solving in the research are related, as the title says, to the concerns of researchers in the field of ship structures. In addition to actual optimization, numerical and experimental modeling will be performed to verify the optimized structure. New methodologies of approach, both numerical and experimental, will be established to achieve this goal.

The method of research used combines theoretical with experimental elements. The paper will highlight a series of optimization methods that meet the designer, alleviating the decisional sequence. Experimental validations have been performed using modern methods by electric resistive tensometry and optical methods.

The contributions from theoretical, numerical and experimental perspective are important, interesting, original, with immediate applicability, leading to new lines of research.

The degree of achievement of objectives is also fulfilled in the highest proportion; however, opportunities for further research remain open.

The results of the thesis can be put into practice in the activities of design and research and development of the engineers, in an attempt to optimize the mechanical structures both in the naval field and in other fields.

General organization of the PhD thesis

This PhD thesis is the result of documentary studies materialized in theoretical and experimental research conducted by the author in order to achieve the objective proposed by choosing the theme and aimed at bringing the author's own contribution to the improvement of performance as far as concerns the optimization of ship structures.

In order to attain the objectives proposed, the PhD thesis was organized into eight chapters, arranged in a logical structure, which highlight the scientific research and novelty items, leading to the achievement of the aim pursued.

Chapter 1, entitled *"Current state of the problems related to the optimization of ship structures"* presents an overview of optimization of ship structures in order to increase the capacity of transportation, highlighting the main aspects of optimization, as well as the mathematical methods used at present.

Chapter 2, entitled "Numerical and experimental analysis, under static conditions on a reduced scale model, of the double bottom structure in order to establish the methodology to approach optimization", begins by presenting the theoretical methods examined in order to determine the indirect stress that occurs in the model analyzed in various technological options. They are followed by experimental analysis on a scale model. Experimental researches were conducted on 3 double bottom structures with radius of fillet for cut-outs of 15, 20, 25 mm.

In **Chapter 3**, entitled "Analysis of indirect stress occurring at static loading in the actual structure of the double bottom at the chemical tank of 8,000 dwt. Comparisons and conclusions relating to the validity of the methodology laid down in Chapter 2", it is presented the description and implementation of the numerical model for the ship in actual size, and for determining the indirect stress in the double bottom structure a whole series of numerical modeling on line welding (LW) structures and intermittent welding (IW) structures were performed, which have been validated through the design and execution of an experimental stand of the scale double bottom structure presented in Chapter 2.

Chapter 4, named "Double bottom structure optimization for a chemical tanker of 8,000 dwt. Setting out the optimization methodology", starts by presenting some theoretical issues concerning the optimization of ship structures, as well as by presenting the constructive and functional optimization algorithm using the Finite Element Method (FEM). The influence of the thickness and of the radius of the cutting, as well as the influence of platband flanging around technological cutouts, had an important role, in the optimization of the double bottom structure, on the indirect stress for the ship in actual dimension. The assessment of indirect stress for the situations presented is carried out by comparing the stress that has arisen in the double bottom structure in in different loading situations and for various constructive solutions. **Chapter 5,** entitled *"Calculation of the resistance at varying loads",* presents theoretical aspects of the fatigue phenomenon, it draws attention to the theories concerning the calculation of fracture, as well as the definition of the emergence and propagation of cracks.

Furthermore, **Chapter 6**, entitled *"Comparative analysis for optimized and unoptimized structure of double bottom"*, presents the positioning modes of voltage concentrators, as well as the determination of the concentration factors for the structure analyzed. Also, the emergence and propagation of cracks in the area of technological cutouts in the strongholds of the double bottom (DB), as well as the determination of crack-propagation specific parameters have been highlighted.

Chapter 7, named *"Elastic-plastic behavior of ship structures. Comparisons between optimized and non-optimized structures",* deals with the general presentation of the elastic-plastic behaviour of materials, as well as with the comparisons obtained in this research for the two structures analyzed.

Chapter 8 entitled "Contributions and final conclusions. Prospects of the use of results. Future lines of research", presents the author's contributions, the conclusions reached, the prospects of use of results and new directions for research that are shaping up as a result of this work.

CAPITOLUL 1

STADIUL ACTUAL PRIVIND PROBLEMATICA OPTIMIZĂRII STRUCTURILOR NAVALE

Objective Principale:

 Evidenţierea condiţiilor impuse de Societăţile de Clasificare privind optimizarea structurilor de navă

- ✓ Formularea problemei de optimizare pentru structura de rezistență a navei
- ✓ Stabilirea domeniului admisibil utilizabil
- ✓ Impunerea condițiilor Kuhn Tucker pentru determinarea soluției admisibile
- Determinarea condițiilor de convergență către o soluție optimă
- ✓ Metodele analitice și numerice utilizate în optimizarea structurilor de nave
- Conceperea procedurii generale de optimizare structurală
 - 1. Definirea funcției obiectiv în optimizarea structurală
 - 2. Formularea restricțiilor
 - 3. Verificarea stărilor limită în optimizarea structurilor navale

1.1 Generalități referitoare la optimizarea structurilor de navă în vederea măririi capacității de transport

Necesitatea reducerii cheltuielilor de construcție și exploatare a navelor a condus la tendința firească de optimizare. În proiectarea structurală se folosesc într-o măsură mai mică sau mai mare trei tipuri de metode și anume: optimizarea relativă pe cale empirică, optimizarea rațională bazată pe relații matematice și optimizarea bazată pe metode de căutare.

Optimizarea se poate face din mai multe puncte de vedere: fie minimizarea costului de fabricație a navei, a greutății navei fără încărcătură, fie maximizarea profitului pe toată durata de viață a navei.

Până în prezent au fost realizate programe (module) utilizabile în proiectare care să fie aplicabile pentru diverse tipuri de nave. Spre exemplu, marile Societăți de Clasificare dispun de sisteme integrate de proiectare generală a navei (forme, propulsie, tehnologie), dar și de programe de calcul structural pentru verificarea rezistenței corpului navelor conform cu regulile lor, programe cere vizează inclusiv optimizarea și care interesează deopotrivă domeniul civil și cel militar: VeriSTAR, SAFEHULL, POSEIDON, AUSTROSHIP, SHIPOPT, MAESTRO ș.a.

1.2 Formularea problemei de optimizare

Problema de bază este minimizarea funcției obiectiv, adică:

$$\min F(X), X \in \mathbb{R}^n, \tag{1.1}$$

cu restricții - tip inegalitate - de mărginire a variabilelor

$$X_{i}^{L} \le X_{i} \le X_{i}^{U}, i = 1...n,$$
(1.2)

și de comportament

$$g_i(X) \le 0, \tag{1.3}$$

unde cu X s-a notat vectorul variabilelor de proiectare, având componentele X_i , i = 1...n.

În Figura 1.1 este reprezentată grafic o astfel de problemă, pentru două variabile.

Figura 1.1 Reprezentarea grafică a problemei de optimizare (Cătălin Iancu, 2002)

1.3 Domeniul admisibil – utilizabil

Există două direcții de căutare a soluției optime și anume direcția de căutare utilizabilă și direcția de căutare fezabilă.

În Figura 1.2 sunt prezentate concepte, pentru o problemă cu două variabile.

O direcție utilizabilă și admisibilă îndeplinește condițiile:

$$\nabla F(X) \cdot S \le 0 \quad \text{si} \quad \nabla g_i(X) \cdot S \le 0 \quad (1.4)$$

pentru orice j pentru care $g_i(X) = 0$

1.4 Condițiile Kuhn Tucker

Condițiile Kuhn – Tucker pot fi analizate în două cazuri:

a) problemă de optimizare fără restricții: $\nabla F(X) = 0$

b) problemă de optimizare cu restricții

1.
$$\nabla F(X) + \sum \lambda_i \nabla g_i(X) = 0, \lambda_i \ge 0$$

2.
$$\lambda_i = 0$$

În Figura 1.3 sunt prezentate grafic condițiile Kuhn –Tucker pentru o problemă de optimizare cu două variabile și două restricții.

Figura 1.2 Domeniile utilizabile şi admisibile ale soluțiilor (Cătălin Iancu, 2002)

Figura 1.3 Condițiile Kuhn – Tucker (Hughes, Owen F.,1988)

1.5 Convergența către optim

Se folosesc mai multe criterii pentru a stabili când procesul secvențial de căutare a soluției optime se încheie:

- Numărul maxim de iterații este folosit pentru a evita calculele excesive.
- Modificările funcției obiectiv sunt cuantificate cu ajutorul a două subcriterii:

a) modificările relative

$$\frac{\left|F(X^{m}) - F(X^{m-1})\right|}{\left|F(X^{m-1})\right|} \le \varepsilon_{R}$$
(1.6)

b) modificările absolute

$$\left|F(X^{m}) - F(X^{m-1})\right| \le \varepsilon_{A} \tag{1.7}$$

- Satisfacerea condițiilor Kuhn -Tucker.

În Figura 1.4 este prezentat criteriul de verificare a optimului.

Figura 1.4 Criteriul de verificare a optimului (Mircea Ancău, Liviu Nistor 1996)

1.6 Metode utilizate în optimizarea structurilor de nave

Metode utilizate în optimizarea structurilor de nave sunt: metoda gradientului, metoda direcției conjugate, metoda SUMT (Sequential Unconstrained Minimization Technique), metoda multiplicatorilor Lagrange

$$L(X,t,\lambda) = F(X) + \sum \lambda_j (g_j + t_j^2),, \qquad (1.8)$$

1.7 Procedura generală de optimizare structurală

După terminarea procesului de optimizare indiferent dacă metoda numerică s-a terminat cu succes sau nu sunt utile în continuare următoarele informații: restricțiile care guvernează punctul de optim obținut; cât de abruptă sau netedă este zona în care s-a obținut optimul; care va fi efectul în cost al relaxării sau restrângerii unor restricții active iar dacă relaxarea este posibilă, pe ce direcție se obține cea mai bună îmbunătățire a funcției obiectiv.

1.7.1 Definirea funcției obiectiv în optimizarea structurală

Alegerea funcției obiectiv depinde de persoana sau instituția care are autoritatea să decidă, deci depinde din partea cui lucrează proiectantul.

Costul de exploatare este puternic influențat de proiectarea structurală prin: durabilitate; mentenanța; confortul.

1.7.2 Formularea restricțiilor în optimizarea structurală

1.7.2.1 Restricții de rezistență

În proiectarea structurală cele mai importante restricții sunt legate de rezistență - acelea care au ca scop o siguranță adecvată și o utilizabilitate.

Restricțiile de rezistență sunt neliniare din diverse motive și anume datorită modurilor de cedare care sunt în general neliniare și care implică mai mult de o încărcare și/sau mai mult de un element al structurii.

1.7.2.2 Restricții nelegate de rezistență

Cerințe de exploatare - dimensiuni minime ale deschiderilor în punți, deformări maxime ale unor elemente, limite ale nivelului de vibrație.

Cerințe de fabricație - grosime maximă a tablelor laminate la rece, distanța minimă între osaturi pentru sudură.

1.7.3 Analiza stărilor limită în optimizarea structurală

Starea limită este aceea în care o structură sau un element al structurii devine nepotrivit pentru rolul pentru care a fost proiectat datorită uneia sau mai multor încărcări și / sau eforturi.

Starea limită ultimă (colaps) este o stare în care elementul de structură cedează din rolul său primordial de rezistență la preluarea sarcinilor.

Starea limită de utilizare reprezintă o deteriorare sau o pierdere a unor funcții din exploatare.

1.8 Concluzii

Formularea problemei de optimizare implică găsirea unui echilibru între construirea unui model suficient de complex pentru a descrie cât mai bine problema și ușurința de rezolvare a acestuia.

Analiza diverșilor algoritmi de optimizare cuprinde aspecte generale ale optimizării, dar și posibilități reale ale soft-ului utilizat, fiind necesar să se compare posibilitățile de optimizare, atât prin metodele clasice cât și prin cele moderne.

Concluzia care se desprinde din analiza acestor metode este aceea că pot fi considerate două variante de lucru în vederea optimizării structurale și anume fie utilizarea unui modul de optimizare cuplat cu un modul de analiză structurală, fie crearea unui modul de optimizare propriu, cuplat cu un modul de analiză structurală, care să corespundă unor anumite cerințe specifice.

În Capitolul 2 vor fi prezentate analizele numerice și experimentale în regim static pe modelul redus la scară al structurii dublului fund, cu scopul stabilirii unei metodologii de abordare a studiului optimizării.

CAPITOLUL 2

ANALIZELE NUMERICE ȘI EXPERIMENTALE ÎN REGIM STATIC PE MODELUL REDUS LA SCARĂ, AL STRUCTURII DUBLULUI FUND ÎN VEDEREA STABILIRII METODOLOGIEI DE ABORDARE A OPTIMIZĂRII

Objective Principale:

- ✓ Alegerea zonei de analizat pe lungimea navei
- Conceperea structurii modelului redus la scară
- ✓ Modelarea structurii reduse în vederea analizei cu elemente finite
- ✓ Analiza numerică. Determinarea stării de tensiune care apare în modelul analizat în diverse variante tehnologice de realizare
- ✓ Analiza experimentală a stării de tensiune care apare în modelul redus
- ✓ Concluzii asupra modului de variație a tensiunilor și deplasărilor pe modelul analizat

2.1 Utilizarea Metodei Elementelor Finite în analiza stării de tensiune care apare în structura corpului navelor. Metodologie de abordare

Studiul din această lucrare se referă la o navă de transportat compuși chimici (tanc chimic) de 8000 tdw (a se vedea subcapitolul 3.1). Toate referirile la structuri navale au drept țintă această navă.

În această lucrare, doresc să prezint optimizarea din punctul de vedere al grosimilor elementelor de osatură din dublul fund în care este necesară cunoașterea completă și cât mai apropiată de realitate, a acestei stări de tensiune. În vederea determinării modului de variație a stării de tensiune din elementele componente ale dublului fund, s-au făcut modelări numerice pe un model redus la scară. S-a ales această cale deoarece metodologia de calcul numeric pe modelul redus poate fi validată experimental. Scara de reducere de la nava în mărime reală la modelul experimental este de 1:10, fiind prezentată în Figura 2.1.

Figura 2.1 Structura dublului fund la modelul redus la scară

Pentru determinarea stării de tensiune din structuri se folosesc mai multe metode analitice si numerice.

O clasificare a metodelor de modelare numerică se poate face din punct de vedere matematic (modelarea matematică a diverselor probleme ale mecanicii fiind independentă de natura fizică a acestor probleme) pe trei direcții principale: Metoda diferențelor finite, Metoda elementelor finite și Metoda elementelor de frontieră.

- a) Metoda diferențelor finite
- b) Metoda elementelor finite (MEF)
- c) Metoda elementelor de frontieră

Deoarece MEF este acceptată ca metodă general valabilă și pentru cazul analizei comportării structurilor navale sub încărcări în cadrul acestei lucrări se va folosi această metodă, care principial se rezumă la a scrie ecuații de echilibru de forma:

$$[K]{\delta} = {Q}$$
(2.1)

unde:

[K]- matricea de rigiditatea a elementului finit;

 $\{\delta\}$ - deplasările nodale;

 $\{Q\}$ - vectorul sarcinilor reduse la noduri.

Din multitudinea de programe de analiză numerică folosind MEF s-a ales programul SolidWorks / COSMOS/M.

Structura analizată este cea a dublului fund fiind compusă din: tabla fundului, tabla dublului fund și osatura aferentă dintre ele. Datorită simetriei structurii navei și a încărcărilor ei s-a considerat pentru studiu, numai jumătate din aceasta, punându-se condițiile de simetrie corespunzătoare.

Structura a fost considerată încastrată la un capăt și liberă la celălalt capăt. Încărcarea s-a realizat pe capătul liber printr-o sarcină uniform distribuită. Elementele finite folosite au fost elementele de membrană și placă groasă, patrulatere. Din discretizare au rezultat un număr de 22464 elemente si 22621 noduri. Discretizarea structurii este prezentată în Figura 2.2.

Figura 2.2 Discretizarea prin elemente finite a structurii modelului redus la scară

S-au efectuat modelări numerice pentru structuri de dublu fund cu raze de racordare a decupărilor de 15, 20, 25 mm (la nava în mărime reală aceste decupări sunt cu raze de racordare de 150, 200, 250 mm). Încărcarea structurii a fost realizată pe zona de cuplare a gurnei cu tabla dublului fund si a avut valorile: 2.5, 5 respectiv 7.5 kN. Legăturile structurii sunt în zona Planului Diametral al navei (PD). S-a ales această legătură din cauza simetriei structurii dublului fund față de PD.

În vederea efectuării de analize comparative s-au avut în vedere două decupări din zona dublului fund. Aceste decupări pot fi observate în Figura 2.3 (discretizarea prin elemente finite). Alegerea acestor decupări a fost dictată de considerente de ordin tehnic. Astfel:

- în zona decupării notată cu **A**) au fost amplasate mărcile tensometrice și s-au făcut măsurători folosind metoda Tensometriei Electrice Rezistive (TER). Aceeași zonă a fost analizată folosind și Metoda Optică (MO).

- în zona decupării notată cu **B**) s-a realizat depistarea concentratorilor de tensiune si s-a realizat inițierea fisurii.

Au fost selectate pe zone, nodurile unde s-a analizat starea de tensiune astfel:

- Figura 2.3 a) pentru a putea efectua validarea rezultatelor numerice cu rezultate experimentale obținute prin TER și MO în zona de solicitare elastică a materialelor;

- Figura 2.3 b) pentru a putea efectua validarea rezultatelor numerice cu rezultate experimentale obținute prin MO pentru zona de solicitare elasto – plastică a materialelor.

Figura 2.3 Repartiția nodurilor analizate

2.1.1 Model redus la scară sudat continuu (SC)

În reprezentările de mai jos este prezentată variația stării de tensiune pentru Structura R_15 solicitată de o forță de 2.5 KN. Pentru sarcinile de 5 si 7.5 kN. Variația stării de tensiune este asemănătoare pentru celelalte două structuri și nu a mai fost prezentată epura acesteia.

În Tabelele 2.1 sunt prezentate tensiunile Von Mises pentru noduri selectate (Figura 2.3 b) pe raza de racordare a decupării.

Nodul	Forto	Tensiuni Von Mises (MPa)			
(Figura 2.3.a)	101ţa (kN)	Raza de racordare (mm)			
(i iguia 2.5 a)	(KIN)	15	20	25	
6440	25	4.22	4.22	4.22	
6449	2.5	2.178	2.178	2.178	
6440	5	8.441	8.441	8.441	
6449	Э	4.355	4.355	4.355	
6440	7 5	12.66	12.66	12.66	
6449	7.5	6.533	6.533	6.533	

Tabelul 2.1 a) Decuparea A) Tensiuni Von Mises

Tabelul 2.1 b) Decuparea **B)** Tensiuni Von Mises

Nodul	Forta	Tensiuni Von Mises (MPa)			
(Eigura 2 3b)	ruița (kni)	Raza de racordare (mm)			
(1 igura 2.55)		15	20	25	
2563		25.22	21.93	19.53	
2754	25	28.37	24.11	20.97	
2899	2.5	29.1	24.69	21.56	
3107		24.02	20.98	18.82	
2563		50.44	43.86	39.06	
2754	F	56.73	48.23	41.94	
2899	5	58.21	49.37	43.12	
3107		48.04	41.95	37.63	
2563		75.66	65.8	58.59	
2754	7.5	85.1	72.34	62.91	
2899		87.31	74.06	64.69	
3107]	72.05	62.93	56.45	

În Tabelele 2.2 sunt prezentate deplasările pe Oy calculate pentru nodurile selectate. *Tabelul 2.2 a) Decuparea A) - Deplasări*

Nodul	Forta	Deplasări Oy (mm)			
(Eigura 2 3 a)	FOIĻA (kNI)	Raza	Raza de racordare (mm)		
(i igula 2.5 a)	(KIN)	15	20	25	
6440	25	-0.0511	-0.0511	-0.0511	
6449	2.5	-0.0518	-0.0518	-0.0518	
6440	5	-0.1022	-0.1022	-0.1022	
6449		-0.1036	-0.1036	-0.1036	
6440	7.5	-0.1534	-0.1534	-0.1534	
6449		-0.1553	-0.1553	-0.1553	

Tabelul 2.2 b) Decuparea B) - Deplasări

Nodul	Forta	Deplasări Oy (mm)			
(Eigura 2 3b)	ruița (kN)	Raza de racordare (mm)			
(Figura 2.3b)		15	20	25	
2563	0.5	-0.2492	-0.2502	-0.2511	
2754		-0.3047	-0.3020	-0.2995	
2899	2.5	-0.3048	-0.3021	-0.2995	
3107		-0.2494	-0.2503	-0.2512	
2563	5	-0.4984	-0.5003	-0.5022	

2754		-0.6094	-0.6041	-0.5989
2899		-0.6095	-0.6042	-0.5991
3107		-0.4987	-0.5006	-0.5025
2563		-0.7477	-0.7505	-0.7533
2754	7 5	-0.9141	-0.9061	-0.8984
2899	7.5	-0.9143	-0.9063	-0.8986
3107		-0.7481	-0.7509	-0.7537

În Figura 2.8 a) sunt reprezentate grafic variațiile tensiunilor Von Mises pentru noduri selectate (Figura 2.3 a) pe raza de racordare a decupării în funcție de sarcina de încărcare (decuparea **A**)), iar în Figura 2.8 b) sunt reprezentate grafic variațiile tensiunilor Von Mises pentru noduri selectate (Figura 2.3 b) în funcție raza de racordare a decupării tehnologice și sarcina de încărcare (decuparea **B**)).

Figura 2.8 a) Reprezentare grafică a variației tensiunii pentru nodurile 6440, 6449

Figura 2.8 b) Dependența stărilor de tensiune în funcție de sarcina de încărcare pentru diverse raze de racordare

Figura 2.9 a) reprezintă variația deplasărilor calculate pentru nodurile selectate (Figura 2.3 a - decuparea **A**)) în funcție de sarcina de încărcare, iar Figura 2.9 b) este reprezentată variația deplasărilor calculate pentru cele 3 raze de racordare (decuparea **B**)) în funcție de sarcina de încărcare.

Figura 2.9 b) Dependența deplasărilor în funcție de sarcina de încărcare pentru diverse raze de racordare

2.1.2 Model redus la scară sudat discontinuu (SD)

Acest tip de structură cu elementele de osatură sudate discontinuu de panourile de tablă s-a luat în considerare numai pentru a putea fi comparate rezultatele experimentale cu cele numerice în vederea validării lor.

În Tabelele 2.3 și 2.4 sunt prezentate tensiunile Von Mises respectiv deplasările pe axa Oy pentru noduri selectate pe raza de racordare a decupării.

						Forța	Tensiuni Von Mises (MPa)			
Tabelul 2	.3 a) Deci	iparea A) 1	Tensiuni Vo	on Mises	(1 iguia	(kN)	Raza de	racorda	re (mm)	
Nodul		Tensi	uni Von I	Mises	2.5 aj		15	20	25	
/Eigura	Forța		(MPa)		2563		24.46	21.26	18.9	
(i iyuia 23 a)	(kN)	Raza de	e racorda	re (mm)	2754		27.24	23.17	20.18	
2.5 aj		15	20	25	2899	2.5	29.68	25.08	21.84	
6440	25	3.927	3.927	3.927	3107		24.56	21.22	18.82	
6449	2.5	2.069	2.069	2.069	2563		48.93	42.52	37.79	
6440	E	7.854	7.854	7.854	2754	_	54.48	46.34	40.35	
6449	5	4.138	4.138	4.138	2899	5	59.35	50.16	43.69	
6440		11.78	11.78	11.78	3107	-	49.12	42.44	37.64	
6449	7.5	6.207	6.207	6.207	2563		73.39	63.78	56.69	
					2754	7.5	81.72	69.51	60.53	
					2899	<i>1.</i> 5	89.03	75.23	65.53	
					3107		73.68	63.66	56.47	

Γ

Tabelul 2.3 b) Decuparea B) - Tensiuni Von Mises

Tabelul 2.4 a) Decuparea A) - Deplasări

Nodul	Forta	Deplasări Oy (mm) Raza de racordare (mm)					
(Figura 2.3.a)	(kN)						
(i iguia 2.5 a)		15	20	25			
6440	2.5	-0.0542	-0.0542	-0.0542			
6449		-0.0549	-0.0549	-0.0549			
6440	F	-0.1083	-0.1083	-0.1083			
6449	5	-0.1097	-0.1097	-0.1097			
6440	7.5	-0.1625	-0.1625	-0.1625			
6449	7.5	-0.1646	-0.1646	-0.1646			

Tabelul 2.4 b) Decuparea **B)** - Deplasări

Nodul	Forto	Deplasări Oy (mm) Raza de racordare (mm)					
(Eigura 2.3b)	(kN)						
(Figura 2.50)		15	20	25			
2563		-0.2617	-0.2627	-0.2637			
2754	25	-0.3222	-0.3189	-0.3158			
2899	2.5	-0.3221	-0.3189	-0.3157			
3107		-0.2620	-0.2630	-0.2640			
2563	E	-0.5234	-0.5255	-0.5275			
2754		-0.6444	-0.6378	-0.6315			
2899	J	-0.6443	-0.6377	-0.6315			
3107		-0.5240	-0.5260	-0.5280			
2563		-0.7851	-0.7882	-0.7912			
2754	7.5	-0.9666	-0.9568	-0.9473			
2899	/.5	-0.9664	-0.9566	-0.9472			
3107		-0.7860	-0.7890	-0.7920			

În Figura 2.10 a) este reprezentă grafic variația tensiunilor Von Mises pentru nodurile selectate (Figura 2.3 a - decuparea A)) în functie de sarcina de încărcare, iar Figura 2.10 b) este reprezentarea grafică a variației tensiunilor Von Mises calculate pentru cele 3 raze de racordare (Figura 2.3 b - decuparea B)).

Figura 2.10 a) Reprezentare grafică a variației tensiunii pentru nodurile 6440, 6449

6.5

4.5 5.5 Încărcare (kN)

0

2.5

3.5

nod 3107

7.5

Figura 2.10 b) Dependența stărilor de tensiune în funcție de sarcina de încărcare pentru diverse raze de racordare

Figura 2.11 a) reprezintă variația deplasărilor calculate pentru nodurile selectate (Figura 2.3 a - decuparea A)) în funcție de sarcina de încărcare și în Figura 2.11 b) este reprezentată variația deplasărilor calculate pentru cele 3 raze de racordare (Figura 2.3 b - decuparea B)) în funcție de sarcina de încărcare.

Figura 2.11 a) Reprezentare grafică a variației deplasărilor pentru nodurile 6440, 6449

2.2 Modelări experimentale pe model redus la scară

În vederea validării rezultatelor modelării numerice a fost conceput un program de modelare experimentală. Acest program a conținut mai multe feluri de modelări experimentale: folosindu-se metoda Tensometriei Electrice Rezistive (TER) și Metode Optice (MO). S-a conceput un stand pentru realizarea verificării experimentale a variației stării de tensiune pe modelul experimental redus la scara 1:10. Grosimea tablelor folosite a fost de 1.2 mm. Astfel au fost construite 3 modele experimentale având razele de racordare a decupărilor tehnologice prezentate anterior.

Modelul experimental realizat este prezentat în Figura 2.12. În Figura 2.12 a) sunt prezentate cele trei modele experimentale executate, cu razele de racordare menționate anterior. În Figura

2.12 b) este prezentat standul experimental format din: structura dublului fund redusă la scara 1:10; cadru rigid de prindere a structurii și a sistemului de încărcare; sistemul de realizare a sarcinii de solicitare format din: șurub cu două începuturi, sistem de prindere de cadrul rigid, dinamometru pentru măsurarea sarcinii; sistemul tensometric de măsurare a tensiunilor; sistem optic de măsură Aramis HS.

Din cauza grosimilor mici ale tablelor componente modelul experimental nu s-a putut suda continuu. Astfel la modelul redus la scară, folosit și pentru modelări experimentale, sudurile au fost discontinue.

Traductoarele tensometrice au fost aplicate în zona nodurilor 6449 și 6440, Figura 2.13, unde s-au realizat tabelele și rezultatele calculelor numerice.

a)

Figura 2.12 Modelul experimental realizat

Figura 2.13 Amplasarea traductoarelor tensometrice

2.2.1 Modelări folosind metoda Tensometriei Electrice Rezistive (TER)

În cadrul acestor experimente modelul experimental a fost încărcat static cu sarcini aplicate pe "capătul liber al structurii". Aplicarea sarcinii s-a realizat prin intermediul unui șurub cu două începuturi, progresiv, de la 0 la valoarea maximă de 7.5 kN. Înregistrarea deformațiilor s-a realizat numai pentru valorile 0, 2.5, 5.0, 7.5 kN. Aceste deformații au fost ulterior prelucrate și au rezultat tensiunile în zonele de amplasare a traductoarelor tensometrice.

Rezultatele obținute prin prelucrarea rezultatelor măsurătorilor tensometrice sunt prezentate în Tabelul 2.5.

Pentru măsurarea deplasărilor pe verticală s-a folosit un ceas comparator. Astfel au rezultat deplasările punctelor de interes din Tabelul 2.6.

	1	1			10			
Nodul (Figura 2.3 a)		Tensi	Nod					
	Forța		(MPa)					
	(kN)	Raza de	2.3					
		15	20	25	644			
6440	25	3.835	3.812	3.807	644			
6449	2.5	2.120	2.110	2.101	644			
6440	E	7.725	7.745	7.710	644			
6449	- 5	4.289	4.208	4.108	644			
6440		12.163	12.011	11.985	644			
6449	7.5	6.469	6.326	6.301	I			

Tabelul 2.5 Tensiuni măsurate tensometric pentru
zona de solicitare elastică a materialelor

Tabelul 2.6 Deplasări măsurate folosind TER

Nodul	Forto	Deplasări (mm) Raza de racordare (mm)					
(Figura	FUIĻa (LNI)						
2.3 a)	(KIN)	15	20	25			
6440	25	0.06	0.06	0.05			
6449	2.5	0.05	0.06	0.05			
6440	E	0.11	0.10	0.11			
6449	5	0.11	0.11	0.11			
6440		0.17	0.17	0.16			
6449	7.5	0.17	0.17	0.16			

2.2.2 Modelări folosind Metode Optice (MO)

Principalele componente ale sistemului optic de măsurare sunt (Figura 2.14): senzor cu 2 camere (2); obiecte de calibrare; dispozitiv de alimentare a camerelor și control al imaginilor înregistrate (1); sistemul de calcul cu achiziție date (1); sistem de iluminare suplimentară, local (3); sistemul de operare Linux și aplicație software ARAMIS HS.

Etapele unui experiment folosind MO sunt:

- ✓ Pregătirea camerelor
- ✓ Calibrarea camerelor

Acesta se realizează, funcție de tipul de experiment folosind "cruci de calibrare" sau "artefacte", Figura 2.15 a, b.

Figura 2.14 Componentele sistemului optic de măsurare Aramis HS

a) Cruci de calibrare

b) Artefacte

Figura 2.15 Echipamente de calibrare

În imaginile de mai jos sunt prezentate graficele de variație a deplasărilor pentru cele 3 raze de racordare. Aceste rezultate sunt prezentate pentru sarcinile de încărcare de 2.5, 5.0, 7.5 kN (Tabelul 2.7).

Nodul	Forta	Deplasări (mm)					
(Figura 2.3 a)	(kN)	Raza de racordare (mm)					
		15	20	25			
6440	2.5	0.057	0.054	0.051			
6449		0.056	0.055	0.053			
6440	F	0.110	0.109	0.109			
6449	5	0.113	0.111	0.1113			
6440	7.5	0.159	0.164	0.169			
6449	1.5	0.160	0.167	0.171			

Tabelul 2	2.7 De	plasări	măsurate	folosind	MC

2.3 Concluzii

În vederea concluzionării asupra metodologiei de abordare a problematicii comportării structurii dublului fund în zona decupărilor tehnologice sub sarcini, datele obținute prin calcul și măsurători experimentale pentru modelul redus la scară, sunt centralizate în Tabelul 2.8.

Asa cum se poate observa rezultatele numerice sunt bine verificate experimental. Diferențele care rezultă din analiza datelor tabelate sunt nesemnificative.

	Forț a (kN)	Deplasări (mm)									
Nodul (Figura 2.3 a)			Raza de racordare (mm)								
			15			20			25		
		Calcul	TER	MO	Calcul	TER	MO	Calcul	TER	MO	
6440	25	0.0542	0.06	0.057	0.0542	0.06	0.054	0.0542	0.05	0.051	
6449	2.5	0.0549	0.05	0.056	0.0549	0.06	0.055	0.0549	0.05	0.053	
6440	5.0	0.1083	0.11	0.110	0.1083	0.10	0.109	0.1083	0.11	0.109	
6449	5.0	0.1097	0.11	0.113	0.1097	0.11	0.111	0.1097	0.11	0.113	
6440	75	0.1625	0.17	0.159	0.1625	0.17	0.164	0.1625	0.16	0.169	
6449	1.5	0.1646	0.17	0.160	0.1646	0.17	0.167	0.1646	0.16	0.171	

Tabelul 2.8 Deplasări centralizate

În Figura 2.16 sunt prezentate variațiile deplasărilor pe nodurile analizate pentru diferite sarcini de încărcare și raze a decupărilor tehnologice.

Raza 25 mm

Figura 2.16 Variația deplasărilor pe nodurile 6440 și 6449 în funcție de sarcina de încărcare pentru fiecare rază de racordare a decupării tehnologice

Centralizând datele în Tabelul 2.9 se poate observa că nu există mari diferențe între cele două metode de sudură folosite pentru realizarea modelul redus la scară (experimental).

Nodul (Figura 2.3 a)	Forța (kN)	Tensiuni Von Mises (MPa)								
			Raza de racordare (mm)							
		15		20		25				
		SC	SD	SC	SD	SC	SD			
6440	25	4.22	3.927	4.22	3.927	4.22	3.927			
6449	2.5	2.178	2.069	2.178	2.069	2.178	2.069			
6440	5.0	8.441	7.854	8.441	7.854	8.441	7.854			
6449		4.355	4.138	4.355	4.138	4.355	4.138			
------	-----	-------	-------	-------	-------	-------	-------			
6440	7.5	12.66	11.78	12.66	11.78	12.66	11.78			
6449	7.5	6.533	6.207	6.533	6.207	6.533	6.207			

Se poate observa că diferențele sunt într-adevăr nesemnificative (Figura 2.17). Valoarea maximă a diferențelor este de 7%.

Figura 2.17 Variația tensiunilor Von Mises pe nodurile analizate pentru sudura continuă și discontinuă a elementelor componente ale structurii dublului fund pe modelul redus

Concluzia importantă care rezidă din studiile efectuate în acest capitol este că metodologia concepută poate fi folosită pentru studiile ulterioare din această lucrare. Rezultatele numerice foarte bine validate experimental, conduc la adoptarea metodologiei concepute în acest Capitol pentru analiza numerică a modelului real (nava în mărime reală).

CAPITOLUL 3

ANALIZA STĂRILOR DE TENSIUNI CARE APAR LA SOLICITAREA STATICĂ ÎN STRUCTURA ÎN MĂRIME REALĂ A DUBLULUI FUND LA TANCUL CHIMIC DE 8000 TDW. COMPARAȚII ȘI CONCLUZII REFERITOARE LA VALIDITATEA METODOLOGIEI STABILITE ÎN CAPITOLUL 2

Objective Principale:

- ✓ Modelarea structurii dublului fund în vederea analizei cu elemente finite
- ✓ Analiza numerică. Determinarea stării de tensiune care apare în modelul analizat
- ✓ Concluzii asupra modului de variație a tensiunilor pe modelul analizat
- ✓ Comparații cu studiul pe model redus. Concluzii asupra validității metodologiei propuse

3.1 Descrierea și realizarea modelului numeric pentru nava în mărime reală

În Capitolul 2 s-a stabilit o metodologie de abordare a analizei folosind MEF a structurii dublului fund. Așa cum s-a arătat această metodologie, a fost bine verificată experimental și va fi folosită în abordarea analizelor pe modelul în mărime reală a structurii de dublu fund.

3.1.1 Dimensiuni și caracteristici principale ale navei în mărime reală

Structura luată în considerare în cadrul acestei lucrări este cea a navei tanc chimic de 8000 tdw. Acest tip de navă este construită în sistem longitudinal de osatură. Dimensiunile principale ale acesteia sunt prezentate în tabelul de mai jos (Tabelul 3.1).

Secțiunea transversală prin această navă este prezentată în Figura 3.1.

rabelul 5.1 Caracteristiche geometrice și de material pentru structura	
Lungimea totală a navei, L_{OA}	118.160 m
Lungimea între perpendiculare, L_{pp}	110.596 m
Lățimea navei, B	18.500 m
Pescajul de plină încărcare, T	7.400 m
Înălțimea de construcție, D	10,000 m
Coeficientul bloc, c_B	0.730
Viteza navei în apă calmă, v	14 Nd

Tabelul 3.1 Caracteristicile geometrice și de material pentru structura dublului fund

Deplasamentul, Δ	8000 tdw
Modulul Young, E	2.1E+5 MPa
Coeficientul Poisson, v	0.3
Densitatea oţelului, ρ	7.85E-6 kg/mm ³
Limita de curgere, R_{eH}	355 MPa
Rezistența la rupere, R_m	360 - 480 MPa

Figura 3.1 Secțiunea transversală la cuplul maestru prin nava în mărime reală

Figura 3.1 a) Detaliul privind zona structurii analizate

Figura 3.1 b) Detaliul privind decupare tehnologică cu raza R de racordare

3.1.2 Discretizarea structurii studiate

Una din analizele importante care trebuie efectuate, avându-se în vedere optimizarea structurii dublului fund, este cea a variației razei de racordare a decupărilor tehnologice sau de ușurare. Se știe că aceste decupări constituie puternici concentratori de tensiune.

Pentru modelele analizate în acest capitol sunt folosite elemente de membrană PLANE2D – acest tip de element a fost folosit la varangă și elemente de membrană și placă de tip SHELL4T.

În Figura 3.2 este prezentată structura discretizată a dublului fund.

În determinările numerice ce vor fi prezentate în acest capitol s-a denumit structura astfel:

Structura R_200 reprezintă structura dublului fund cu raza de racordare a decupării de 200 mm (Figura 3.2 b);

Se face precizarea că structura discretizată a modelului redus este identică cu cea a navei în mărime reală și de aici denumirile structurilor analizate vor fi Structura R_15, Structura R_20, Structura R_25.

Figura 3.2 Discretizarea prin elemente finite folosită în studiu

3.1.3 Condiții de margine și încărcări

În cazul modelului 3D FEM pentru această structură s-au considerat următoarele condiții de margine:

- planul diametral (PD): condiție de simetrie – prin care s-au blocat toate deplasările și toate rotirile;

- intersecția planului diametral și planul cadrului transversal (PD \cap PC): – prin care s-au blocat toate deplasările și toate rotirile;

- intersecția planului diametral și planul de bază (PD ∩ PB): – prin care s-au blocat toate deplasările și toate rotirile.

Structura în mărime reală a fost încărcată cu forțe: 25 kN, 50 kN, 75 kN, în nodurile de la intersecția învelişului gurnei cu învelişul dublului fund.

3.2 Modelarea numerică a structurii dublului fund pentru nava în mărime reală. Analiza rezultatelor

În Tabelul 3.2 sunt prezentate caracteristicile modelului FEM la nava în mărime reală.

Numărul de elemente de placă și membrană PLATE (QUAD)	22464					
Numărul de noduri	22621					

Tabelul 3.2 Caracteristicile FEM ale modelului

De asemenea, în zonele cu frânturi se impune introducerea de nervuri de rigidizare după bisectoare astfel încât tensiunile să se situeze în limitele admisibile.

Pentru a face evaluări cât mai corecte s-au efectuat modelări pe structuri sudate continuu şi discontinuu.

3.2.1 Structura dublului fund de la nava în mărime reală sudată continuu (SC)

S-a considerat cazul fără rigidizarea decupărilor.

Structura - R_200_neoptimizată

În Tabelul 3.3 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării, iar în Figura 3.3 este prezentată variația tensiunii Von Mises pentru situația în care avem grosime constantă și încărcare variabilă.

R_200_neoptimizată_sudată continuu							
Nodul (Figura	Grosime tablă	Tensiuni Von Mise (MPa)					
(Figura	(mm)	Forța (kN)					
2.5 0)	(1111)	25	50	75			
2563	12	217.7	435.3	653			
2754		241.1	482.3	723.4			
2899		246.9	493.7	740.6			
3107		209.8	419.5	629.3			

Tabelul 3.3 Tensiuni Von Mises pentru Structura

Figura 3.3 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

3.2.2 Structura dublului fund de la nava în mărime reală sudată discontinuu (SD)

Această structură cu elementele de osatură sudate discontinuu, de panourile de tablă, a fost luată în considerare, numai pentru a putea fi comparate rezultatele experimentale cu cele numerice în vederea validării.

Structura – R_200_neoptimizată

În Tabelul 3.4 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării, iar în Figura 3.4 este prezentată variația tensiunii Von Mises pentru situația în care avem grosime constantă și încărcare variabilă.

R_200_neoptimizată_sudată discontinuu							
Nodul (Figura	Grosime	Tensiuni Von Mises (MPa)					
	(mm)	Forța (kN)					
2.5 0)	(1111)	25	50	75			
2563	12	211	422	633.1			
2754		231.7	463.4	695.1			
2899		250.8	501.6	752.3			
3107		212.2	424.4	636.6			

Tabelul 3.4 Tensiuni Von Mises pentru Structura
R_200_neoptimizată_sudată discontinuu

Figura 3.4 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

3.3 Influența bordurării cu platbenzi în jurul decupărilor tehnologice asupra stării de tensiune la nava în mărime reală

3.3.1 Structura dublului fund de la nava în mărime reală sudată continuu (SC)

În urma calculelor numerice efectuate, rezultatele obținute au fost centralizate în diagrame în care s-a evidențiat variația tensiunii pe nod în funcție de sarcina de încărcare.

Structura - R_200_neoptimizată

În Tabelul 3.5 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării, iar în Figura 3.5 este prezentată variația tensiunii Von Mises pentru situația în care avem grosime constantă și încărcare variabilă.

R_200_neoptimizata								
Nodul	Grosime	Tensiuni Von Mise (MPa)						
(Figura	(mm)	Forța (kN)						
2.3 0)		25	50	75				
2563		142.1	284.1	426.2				
2754	12	177.3	354.5	531.8				
2899	12	126.8	253.5	380.3				
3107]	87.2	174.4	261.6				

Tabelul 3.5 Tensiuni Von Mises pentru Structura

Figura 3.5 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

3.3.2 Structura dublului fund de la nava în mărime reală sudată discontinuu (SD)

Această structură a fost luată drept studiu numai pentru a fi posibilă validarea rezultatelor experimentale cu cele numerice.

Structura – R_200_neoptimizată

În Tabelul 3.6 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării și-n Figura 3.6 este prezentată variația tensiunii Von Mises pentru situația în care avem grosime constantă și încărcare variabilă.

R_200_neoptimizată							
Nodul (Figura	Grosime tablă	Tensiuni Von Mises (MPa)					
(Figura	(mm)	F	I)				
2.3 D)	(11111)	25	50	75			
2563	12	137.1	274.2	411.3			
2754		173.2	346.5	519.7			
2899		131.5	262.9	394.4			
3107		86.7	173.5	260.2			

n Mises pentru Structura
oı

Figura 3.6 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

3.4 Analiza rezultatelor modelărilor numerice efectuate la nava în mărime reală

Așa cum se poate vedea din Figurile 3.8 și 3.9 se poate concluziona că starea de tensiune, pentru nava la scară, în mărime reală, depășește limitele admisibile ale materialului din care sunt confecționate elementele componente, datorită încărcărilor din test.

De asemenea din analiza stărilor de tensiune în cazul sudurilor continue (SC) și discontinue (SD) între elementele componente ale dublului fund se poate observa că (Figurile 3.7 și 3.8) tensiunile nu diferă substanțial.

Figura 3.7 Variația stării de tensiune (pe nod) în funcție de sarcina de încărcare în cazul nebordurării decupărilor tehnologice

Avându-se în vedere analizele efectuate, prin rezultatele obținute în urma modelărilor numerice, se va putea predicționa variația stării de tensiune în elementele componente ale structurii dublului fund.

Figura 3.8 Variația stării de tensiune (pe nod) în funcție de sarcina de încărcare în cazul bordurării decupărilor tehnologice

3.5 Concluzii referitoare la structura în mărime reală a dublului fund

a) Structura dublului fund cu decupări tehnologice nebordurate sudate continuu și discontinuu - analizând spre exemplu structura cu racordarea decupării de 200 mm, pentru aceeași zonă analizată, se poate observa că tensiunile diferă cu până la 3%. Acest lucru poate fi explicat prin discretizarea practicată în cele două cazuri sudură continuă / discontinuă.

b) Structura dublu fund cu decupări tehnologice bordurate sudate continuu și discontinuu - suplimentar, prin prezența bordurării, elementele au fost mai bine legate, în cazul sudurii discontinue, obținându-se diferențe mai mici comparativ cu cazul nebordurat.

c) Structura dublu fund cu decupări tehnologice bordurate / nebordurate sudate continuu - din analiza datelor se poate vedea că bordurarea are o influență foarte puternică, asupra variației stării de tensiune, local în zona decupărilor tehnologice. Se înregistrează astfel diferențe de chiar aproximativ 60% în zonele analizate.

d) Structura dublu fund cu decupări tehnologice bordurate / nebordurate sudate discontinuu - se înregistrează astfel diferențe de chiar aproximativ 60% în zonele analizate. De aceea, se recomandă ca aceste decupări tehnologice să fie bordurate.

O altă analiză care trebuie efectuată se referă la valoarea raportului în care se găsesc tensiunile pentru modelul în mărime reală și cel redus la scară. În Tabelul 3.11 sunt prezentate tensiunile pentru modelul cu raza de racordare de 200 mm respectiv 20 mm.

	Tensiuni Von Mises (MPa)										
Nodul (Figura 2.3 b)	Gros. tablă		Forța (kN)		Gros tablă		Forța (kN)				
	(mm)	25	50	75	(mm)	2.5	5	7.5	Rap mo	ort nat del rec	ură / lus
2563		217.7	435.3	653		21.93	43.86	65.80	9.9	9.9	9.9
2754	12	241.1	482.3	723.4	12	24.11	48.23	72.34	10.0	10.0	10.0
2899		246.9	493.7	740.6	1.2	24.69	49.37	74.06	10.0	10.0	10.0
3107		209.8	419.5	629.3		20.98	41.95	62.93	10.0	10.0	10.0

Tabelul 3.11 Tensiuni Von Mises pe modelul în mărime reală și pe cel redus la scară

Din analiza rezultatelor obținute se pot concretiza următoarele aspecte:

- În cazul folosirii sudurilor discontinue tensiunile nu diferă substanțial față de cazul sudurilor continue. În situațiile în care nu se dorește etanșarea unor compartimente, sudura discontinuă poate fi folosită la îmbinarea diverselor elemente constructive. Aceeași concluzie a fost trasă și în cazul analizei modelului redus la scară.

- Se recomandă folosirea bordurărilor la decupările de uşurare deoarece tensiunile scad considerabil, eliminându-se astfel riscul apariției de tensiuni periculoase. Așa cum se poate vedea din tabelele de mai sus, reducerea tensiunilor în zona decupărilor tehnologice, reduce riscul apariției și propagări fisurilor în acele zone.

- Așa cum se poate vedea din Tabelul 3.12 raportul dintre tensiunile obținute la modelul în mărime reală și cel redus la scară se găsesc în raportul 1:10. Acest lucru era de așteptat. Se poate concluziona, o dată mai mult, că metodologia concepută este corectă și va putea fi folosită cu succes în studiile următoare.

- Metodologia de calcul prezentată poate fi folosită cu succes pentru calculul stărilor de tensiune din structura dublului fund al navelor.

În continuare, folosind metodologia de folosire a MEF pentru calculul structurilor navale, vor fi efectuate studii care să conducă la metodologii de optimizare a structurilor de nave. De asemenea se vor efectua studii asupra structurii optimizate care să conducă la stabilirea de metodologii pentru abordare problemelor la limită: curgere plastică, fisurare în cazul structurilor navale.

CAPITOLUL 4

OPTIMIZAREA STRUCTURII DUBLULUI FUND AL NAVEI TANC CHIMIC DE 8000 TDW. STABILIREA METODOLOGIEI DE OPTIMIZARE

Objective Principale:

- ✓ Noțiuni referitoare la optimizarea structurilor navale
- ✓ Alegerea parametrilor de optimizat
- ✓ Funcția obiectiv, restricții
- ✓ Stabilirea metodologiei folosite pentru optimizarea structurii dublului fund

✓ Folosirea SolidWorks / COSMOS/M pentru optimizarea grosimilor plăcilor componente ale structurii dublului fund

4.1 Generalități referitoare la optimizarea structurilor de navă

Scopul principal al optimizării unei structuri – sau, altfel spus, al proiectării optimale a structurii – este determinarea formei acesteia.

Etapa de alegere a metodei de optimizare implică identificarea unei metode, sau a unei tehnici de optimizare care poate fi aplicată ţinând cont de următoarele: numărul variabilelor de decizie; forma funcţiei obiectiv; forma şi numărul restricţiilor.

Metodele de optimizare se pot grupa în trei categorii:

- a) Metode analitice sau clasice de optimizare;
- b) Metode numerice de optimizare sau metode de căutare directă;
- c) Metode de programare .

Procesul de optimizare urmărește atât concepția, alcătuirea de ansamblu a structurii de rezistență și stabilirea formei ei, cât și dimensionarea elementelor care o compun.

În practica optimizării structurilor de rezistență se întâlnesc în general, două tipuri de restricții:

1. Restricții din criterii de rezistență la stări limită;

2. Restricții constructive din considerente tehnologice și de norme de proiectare.

Funcția obiectiv exprimă dependența criteriului de optimizare de variabilele de decizie și se obține pe baza ecuațiilor modelului matematic al sistemului supus optimizării.

4.2 Algoritmul optimizării constructiv - funcționale prin Metoda Elementului Finit

Algoritmul optimizării constructiv - funcționale prin Metoda Elementului Finit este prezentat în Figura 4.3.

Figura 4.3 Algoritmul optimizării constructiv functionale prin Metoda Elementului Finit

Metoda elementului finit, este formată din trei faze principale:

a) Pre-procesarea: realizarea modelului formă, dimensiuni, (caracterizat prin caracteristici de material). discretizarea modelului solid în elemente finite, aplicarea condițiilor la limită și a încărcărilor;

b) Procesarea: rezolvarea numerică a ecuațiilor caracteristice comportării sistemului și obținerea soluției;

c) Post-procesarea: vizualizarea rezultatelor în vederea analizei comportării sistemului și identificării zonelor cu solicitări critice.

După definirea geometriei structurii, primul pas este definirea parametrilor de material a structurii analizate.

Parametrii de material setați în programul SolidWorks / COSMOS/M sunt: densitatea, modulul de elasticitate Young, coeficientul Poisson sunt definiți în Tabelul 4.1.

Tabel 4.1 Parametrii materialului					
Density	7.85e-006 kg mm ³				
Young's Modulus	2.1e+005 MPA				
Poisson's Ratio	0.3				

Rețeaua de elemente aplicată pe modelul CAD a structurii analizate, este prezentată în Figura 4.4, iar în Figura 4.5 sunt puse în evidență restricțiile, precum și încărcările pe structura analizată.

Figura 4.4 Modelul discretizat cu elemente finite

Figura 4.5 Condiții de margine și încărcările impuse pe modelul analizat

Aşa cum s-a precizat în capitolul anterior, în vederea evaluării cât mai corecte s-au efectuat modelări numerice pe structuri sudate continuu și discontinuu.

Problema optimizării poate fi definită astfel:

 Obiectivul principal al proiectării este acela de a avea o greutate minimă (adică folosirea a cât mai puţin material);

- Variabilele problemei de optimizare luate în calcul sunt cele date de date, de grosimea planşeelor de table, (în cazul de față este vorba de grosimea tablei varangei): $t_{\min} \le t_i \le t_{\max}, i \in [11,...,16]$.

Domeniul de variație al grosimii tablelor este discontinuu, iar acestea trebuie să fie numere pozitive și anume: $t_i \ge 0, i \in [1, 2, ..., n]$.

- Restricțiile problemei de optimizare sunt cele date de rezistența navei.

Pentru a face evaluări cât mai corecte s-au efectuat modelări pe structuri sudate continuu şi discontinuu

4.3 Modelarea numerică a structurii dublului fund pentru nava în mărime reală. Analiza rezultatelor

4.3.1 Structura dublului fund de la nava în mărime reală sudată continuu (SC)

Pe baza calculelor numerice efectuate, rezultatele obținute au fost centralizate în diagrame în care s-a evidențiat variației grosimii tablei varangei și a razei de racordare asupra stării de tensiune.

Structura - R_200_optimizată

În Tabelul 4.2 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării tehnologice, iar în Figura 4.6 sunt prezentate comparații grafice pentru variația tensiunii Von Mises pentru grosimea tablei varangei rezultată în urma procesului de optimizare și încărcare variabilă.

R_200_optimizată_sudată continuu					
Nodul (Eigura	Grosime	Tensiuni Von Mises (MPa)			
(Figura 23b)	(mm)	Forţa (kN)			
2.5 0)		25	50	75	
2563	11.5	226.3	452.6	678.8	
2754		250.1	500.3	750.4	
2899		256.0	511.9	767.9	
3107		218.2	436.4	654.5	

Tabelul 4.2 Tensiuni Von Mises pentru Structura

Figura 4.6 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

4.3.2 Structura dublului fund de la nava în mărime reală sudată discontinuu (SD)

În Tabelul 4.3 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării tehnologice și-n Figura 4.7 sunt prezentate comparații grafice pentru variația tensiunii Von Mises pentru grosimea tablei varangei rezultată în urma procesului de optimizare și încărcare variabilă.

R_200_optimizată_sudată discontinuu					
Nodul	Grosime	Tensi	uni Von (MPa)	Mises	
(Figura 23b)	(mm)	Forţa (kN)			
2.5 0)	(1111)	25	50	75	
2563		219.4	438.7	658.1	
2754	44 5	240.5	481.0	721.6	
2899	11.5	259.9	519.7	779.6	
3107	1	220.7	441.4	662.0	

Tabelul 4.3 Tensiuni Von Mises pentru Structura

4.4 Influența bordurării decupărilor tehnologice asupra stării de tensiune la nava în mărime reală optimizată

4.4.1 Structura dublului fund de la nava în mărime reală optimizată sudată continuu (SC)

În Tabelul 4.4 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării tehnologice., iar în Figura 4.8 sunt prezentate comparații, grafice, pentru variația tensiunii Von Mises pentru grosimea tablei varangei rezultată în urma procesului de optimizare și încărcare variabilă.

Nodul (Figura	Grosime	Tensi	uni Von (MPa)	Mises
(Figura 23b)	(mm)	F	Forța (kN)	
2.5 0)		25	50	75
2563		149.5	299.0	448.5
2754	11.5	185.5	371.0	556.4
2899		133.0	266.0	399.0
3107		92.25	184.5	276.7

Figura 4.8 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

4.4.2 Structura dublului fund de la nava în mărime reală optimizată sudată discontinuu (SD)

În Tabelul 4.5 sunt prezentate tensiunile Von Mises pentru noduri selectate pe raza de racordare a decupării, și-n Figura 4.9 sunt prezentate comparații, grafice, pentru variația tensiunii Von Mises pentru grosimea tablei varangei rezultată în urma procesului de optimizare și încărcare variabilă.

<u></u>	R_200_0plinizala_bordurare					
Nodul	Grosime	Tensi	uni Von (MPa)	Mises		
(Figura 23b)	(mm)	F	orța (kN	I)		
2.5 0)		25	50	75		
2563		144.4	288.8	433.3		
2754	11 5	181.3	362.6	543.9		
2899	11.5	137.8	275.6	413.5		
3107	1	91.75	183.5	275.2		

Figura 4.9 Variația stării de tensiune pe nod în funcție de sarcina de încărcare

4.5 Analiza rezultatelor modelărilor numerice efectuate la nava în mărime reală optimizată

Din analiza stărilor de tensiune în cazul sudurilor continue și discontinue între elementele componente ale dublului fund se poate observa că (Figurile 4.10 și 4.11) tensiunile nu diferă foarte mult. Justificarea acestui lucru poate fi făcută, prin modul în care, în analiza cu elemente finite se realizează cuplarea elementelor vecine la noduri.

Prin rezultatele obținute în urma modelărilor numerice, se va putea anticipa variația stării de tensiune în elementele componente ale structurii dublului fund.

Figura 4.11 Variația stării de tensiune (pe nod) în funcție de sarcina de încărcare în cazul bordurării decupărilor tehnologice

4.6 Concluzii referitoare la structura în mărime reală optimizată a dublului fund

a) Structura dublului fund cu decupări tehnologice nebordurate sudate continuu și discontinuu - spre exemplu, analizând structura cu racordarea decupării de 200 mm, pentru aceeași zonă luată în calcul, se poate remarca că tensiunile diferă cu până la 4%.

b) Structura dublu fund cu decupări tehnologice bordurate sudate continuu și discontinuu - prin prezența bordurării, elementele au fost mai bine legate în cazul sudurii discontinue obținându-se diferențe mai mici comparativ cu cazul nebordurat. Au fost aplicate aceleași încărcări.

c) Structura dublu fund cu decupări tehnologice bordurate / nebordurate sudate continuu - se constată astfel, diferențe de aproximativ 60% în zonele analizate. Prin urmare, se recomandă ca aceste decupări tehnologice să fie bordurate, pentru atenuarea concentratorilor de tensiune.

d) Structura dublu fund cu decupări tehnologice bordurate / nebordurate sudate discontinuu - pe baza datelor se poate vedea că prezența bordurării are o influență foarte puternică asupra variației stării de tensiune local în zona decupărilor tehnologice.

Din analiza rezultatelor obținute pentru structura optimizată mai rezultă și faptul că masa structurii s-a redus. Astfel pentru modelul numeric abordat format numai din două varange cu elementele de osatură adiacente a rezultat o reducere a masei cu 364 kg. Extinzând pe întreaga lungime a navei ar putea rezulta o reducere a masei de aproximativ 2400 kg. Avându-se în vedere necesitățile de mărire a capacității de transport, folosind metodologia de optimizare prezentată se poate mări această capacitate cu aproximativ 4,16%.

CAPITOLUL 5

CALCULE DE REZISTENȚĂ LA SOLICITĂRI VARIABILE

Objective Principale:

- Prezentarea fenomenului de oboseală
- ✓ Stabilirea sarcinilor variabile care acţionează asupra structurii navei studiate
- ✓ Criterii pentru studiul comportării structurilor la solicitări variabile
- Definirea modului de apariţie şi propagare a fisurilor

5.1 Generalități despre oboseală și calculul la oboseală

Principalele etape de analiză, necesare găsirii soluțiilor problemelor ce apar în urma solicitării variabile sunt:

- structura sau componența istoricului solicitării;

- geometria - în cadrul acestei etape trebuie făcută o analiză în legătură cu forma în care solicitările exterioare măsurate se transformă în tensiuni sau deformații;

- materialul – pentru materialele componente ale structurii trebuie avută în vedere influența solicitării de oboseală.

5.1.1 Cicluri de solicitare și caracteristicile lor

Ciclurile de solicitare pot fi împărțite în:

- cicluri deterministe când tensiunea se exprimă prin relații explicite de timp;

- cicluri aleatoare când tensiunea nu mai este definită printr-o expresie matematică explicită.

Ciclul sinusoidal intră în categoria ciclurilor deterministe, în care variația în timp a tensiunii este dată de relația:

$$\sigma = \sigma_m + \sigma_a \sin(\omega t + \varphi) \cdot \tag{5.1}$$

unde:

 σ_m - tensiunea medie a ciclului; σ_a - amplitudinea ciclului; ω - pulsaţia; φ - faza iniţială în raport cu originea timpului.

În Figura 5.1 este prezentat un ciclu de solicitare sinusoidal.

Figura 5.1 Ciclu de solicitare sinusoidal (Dumitru I., 1999)

5.1.2 Factorii care influențează rezistența la oboseală

Factorii care influențează durabilitatea la solicitări variabile pot fi grupați în factori de lucru determinați de condițiile de exploatare; factori constructivi; factori tehnologici.

5.2 Schematizări ale diagramelor privind calculul de rezistență la oboseală

Aceste diagrame permit trasarea și citirea valorii rezistențelor la oboseală în funcție de natura ciclului de solicitare variabilă, exprimat prin coeficientul de asimetrie.

5.2.1 Diagrame de tip Haigh

Figura 5.2 reprezintă o diagramă de tip Haigh pentru solicitări cu $\sigma_m > 0$.

Coeficientul de asimetrie va avea valoarea:

$$R = \frac{\sigma_{\min}}{\sigma_{\max}} = \frac{\sigma_m - \sigma_a}{\sigma_m + \sigma_a}$$
(5.2)

unde:

 $\sigma_{\scriptscriptstyle a} = \frac{1-R}{1+R} \sigma_{\scriptscriptstyle m}$ - reprezintă ecuația dreptei ce

trece prin origine în cazul în care R = const. Coeficientul unghiular al acestei drepte este dat de relația:

$$tg\varphi = \frac{1-R}{1+R}.$$
(5.3)

Figura 5.2 Diagrama Haigh (Dumitru I., 1999)

5.2.2 Schematizări ale diagramei Haigh

În Figura 5.3 sunt prezentate câteva dintre schematizările liniare ale acestei diagrame, iar în Figura 5.4 sunt prezentate schematizările neliniare ale acestei diagrame.

Elipsă (Buzdugan)

Kececioglu

 σ_{c}

(a=2,6)

 σ_{mL}

σ

Gerber

Goodman

Bagci

Figura 5.4 Schematizări neliniare ale diagramei

Haigh (Elemente de calcul și aplicații în

rezistența materialelor, Dumitru I, Faur N., -.Timișoara, Ed. Politehnica, 1999)

 σ_{aL}

 σ_{-1}

Figura 5.3 Schematizări liniare ale diagramei Haigh

Smith

întindere și compresiune (Figura 5.5).

tensiunilor ($\sigma_{
m max},\sigma_{
m min}$) ca funcție de tensiunea

medie (σ_m) , pentru solicitările variabile de

Diagrama

Figura 5.5 Schematizarea diagramei Smith (*Pavel Tripa, 2001*)

5.2.4 Calculul coeficientului de siguranță pe baza schematizării Soderberg

variația

În Figura 5.6 este prezentată schematizarea Soderberg.

reprezintă

Coeficientul de siguranță este dat de relația:

$$c = \frac{\sigma_{aL}}{\sigma_a}$$
 (5.4)

unde: σ_{aL} reprezintă valoarea maximă a tensiunii pentru piesa solicitată până la rupere, punctul L, iar σ_a reprezintă valoarea maximă a tensiunii pentru piesa solicitată la valori mai mici ale tensiunii.

5.2.5 Calculul coeficientului de siguranță pe baza schematizării Serensen

După diverși autori (Irwin, G.R., 1952), (Kaw, A.K., 2006), (Lewis, J.C., 1981), coeficientul de siguranță reprezintă raportul între tensiunea maximă al ciclului limită și cel al ciclului real.

 $c = \frac{\sigma_{\max L}}{\sigma_{\max}}.$ (5.5)

Pe baza schematizării Serensen se poate observa că dacă ciclul este situat deasupra liniei OB, este asimetric sau pulsant, sau dacă se află sub linia OB, este ondulant (Figura 5.7).

În cazul ciclurilor situate sub linia OB se va calcula coeficientul de siguranță față de limita de curgere cu formula:

$$c_c = \frac{\sigma_c}{\sigma_{\max}} = \frac{\sigma_c}{\sigma_m + \sigma_a} \cdot$$
(5.6)

Figura 5.7 Schematizarea diagramei Serensen (Vasiliev, V., 2001)

5.3 Fenomenul degradării mecanice. Apariția și propagarea fisurilor

Există trei etape caracteristice procesului de degradare a structurilor în urma solicitărilor variabile și anume: inițierea fisurii; propagarea fisurii; ruperea finală.

5.3.1 Criteriul Palmgren – Miner

Criteriul Palmgren - Miner este unul din cele mai utilizate criterii de cumulare a degradărilor, bazându-se pe următoarele considerații (Dumitru, I., 1997):

- fiecare grupă de sinusoide produce o degradare egală cu raportul dintre numărul de cicluri din grupă și numărul de cicluri;

- degradarea produsă de orice grupă de sinusoide nu depinde de poziția gupei în cadrul programului de solicitare;

degradarea totală este egală cu suma degradărilor produse de fiecare grupă de sinusoide.

Din curba S-N, (Figura 5.8), se poate determina numărul de cicluri până la rupere, N_1 la σ_1 ,

 N_2 la σ_2 , ..., N_N la σ_N .

Figura 5.8 Curba de rezistență S-N (Dumitru I., 1997)

Conform acestei teoriei, este de apreciat ca deteriorarea parţială pentru un nivel al tensiunii σ_i să fie considerată a fi n_i/N_i , astfel încât momentul ruperii prin oboseală să se producă atunci când:

$$\sum_{i=1}^{N} \frac{n_i}{N_i} = 1 \cdot$$
(5.7)

5.3.2 Criteriul Grower

Un alt criteriu folosit pentru determinarea factorului cumulativ de degradare, (Subramanian, S., 1995), (Dumitru, I., 1997), este cel propus de Grower, care consideră că numărul total de cicluri până la rupere a unui material supus unor solicitări alternante este format din:

- un număr de cicluri N'_{f} necesar inițierii unei fisuri;
- un număr de cicluri $N_{f}^{"}$ necesar extensiei fisurii până la rupere.

Potrivit teoriei lui Grower, numărul total de cicluri până la rupere, N_R , este:

$$N_{R} = N'_{f} + N''_{f}; (5.8)$$

unde:

$$N'_{f} = \sum_{i=1}^{N} n'_{if}; N''_{f} = \sum_{i=1}^{N} n''_{if}$$
 (5.9)

în care:

 n'_{if} - reprezintă numărul total de cicluri necesari inițierii fisurii;

 $n_{i\!f}^{"}$ - reprezintă numărul total de cicluri necesari producerii ruperii.

5.3.3 Criteriul Corten-Dolan

Criteriul dat de către Corten și Dolan cu privire la determinarea coeficientului cumulativ de degradare ia în calcul acesta interacțiune a repetării sinusoidei tensiunii. Conform acestui criteriu degradarea *D* produsă de n cicluri este:

$$D = f \cdot n^s \cdot \tag{5.10}$$

unde: f - reprezintă o funcție care depinde de nivelul de solicitare; s - reprezintă o constantă independentă de nivelul de solicitare.

5.4 Noțiuni introductive în teoria ruperii

Studiul analitic al mecanicii ruperii a fost prezentat în lucrarea lui Wieghardt (Routschka G., "Beitrag zum Einfus des Kornaufbaus auf die Porengrose Feuerfester Steine", Keramische Zeischrift, nr. 8, pg. 536-540, 1994) din 1907, în care s-a încercat determinarea câmpului de tensiuni din jurul fisurii solicitate static din modul mixt de încărcare. Relația găsită este:

$$\sigma = r^m G(\theta) \cdot \tag{5.11}$$

unde: *r* - reprezintă raza la vârful fisurii; θ - reprezintă unghiul polar.

Contribuția principală a lui Griffith este reprezentată de relația în care intră tensiunea de fisurare σ_f și mărimea fisurii *a*.

$$\sigma_f \sqrt{\pi a} = \sqrt{2\gamma_s E} \,. \tag{5.12}$$

unde: γ_s - reprezintă energia superficială; E - reprezintă modulul de elasticitate în sens longitudinal.

În 1956 Irwin a dezvoltat o nouă abordare ce reiese din conceptul modificării teoriei lui Griffith. Acest concept presupune că energia necesară pentru crearea de noi suprafeţe în timpul propagării fisurii provine de la diminuarea energiei elastice de deformaţie din întregul solid.

$$\sigma_f \sqrt{\pi a} = \sqrt{2\gamma_s E} \,. \tag{5.13}$$

5.4.1 Teorii privind calculul la rupere

5.4.1.1 Teoria lui Griffith

În vederea determinării tensiunii de la vârful fisurii, Griffith, A.A., a luat în considerare o placă subțire supusă la o tensiune de întindere uniaxială, σ . În această placă se află o fisură eliptică de lungime 2c (Figura 5.9).

În condițiile stării plane de tensiune, rezultă tensiunea normală necesară propagării unei fisuri:

$$\sigma = \sqrt{\frac{2\gamma_s E}{\pi c}}$$
(5.14)

unde:

 γ_s - reprezintă energia de suprafață;

c - reprezintă mărimea fisurii;

E - reprezintă modulul de elasticitate longitudinal.

Figura 5.9 Microfisură de tip Griffith (Griffith, A.A. 1920)

5.4.1.2 Teoria lui Orowan

Orowan a arătat că ecuația lui Griffith devine compatibilă cu ruperea materialelor fragile reale, dacă energia de suprafață, γ_s , i se adaugă și lucrul mecanic de deformare plastică necesar extinderii fisurii, γ_n .

$$\sigma_f = \sqrt{\frac{2E(\gamma_s + \gamma_p)}{\pi c}}.$$
(5.15)

5.4.1.3 Teoria lui Irwin

Pe baza teoriei lui Irwin, în cazul unei fisuri eliptică de lungime 2c dintr-o placă infinită supusă unei tensiuni normale, σ , perpendiculară pe planul fisurii, forța care acționează pe unitatea de lungime a frontului fisurii este:

$$G_f = \frac{\pi c \,\sigma^2}{E} \,. \tag{5.16}$$

unde:

 G_{f} - reprezintă forța de extensie a fisurii sau viteza de relaxare a energiei de deformare.

5.4.2 Moduri de rupere – Moduri de solicitare

Irwin (Irwin, G.R., 1957), a extins teoria emisă de către Griffith în domeniul materialelor elasto - plastice și a determinat trei moduri de solicitare, (Figura 5.10).

Figura 5.10 Moduri fundamentale de rupere (Goanță, V., 2006)

Modul I – Modul de deschidere sau de întindere, (Figura 5.10); *Modul II* – Modul de forfecare sau alunecare plană, , (Figura 5.10); *Modul III* – Modul de alunecare anti-plan sau modul de sfâșiere, (Figura 5.10).

5.4.3 Parametrii de calcul în Mecanica Ruperii

Parametrii tipici de Mecanica Ruperii descriu fie viteza de eliberare a energiei fie de amplitudinea câmpurilor de tensiune și de deformație din fața vârfului fisurii.

În analizele de Mecanica Ruperii sunt larg folosiți următorii parametrii: factorul intensității tensiunii; viteza de eliberare a energiei; integrala *J*.

Se va considera o placă cu grosimea unitară, solicitată elastic în modurile I și II ($u_3 \neq 0$ și $u_1\neq 0$, $u_2\neq 0$ și $u_3=0$), care conține o fisură centrală, (Figura 5.11).

Figura 5.11 Definirea integralei *J* (Goanță, V., 2006)

În urma efectuării unor transformări simple și a anumitor calcule integrala J devine:

$$J = \int_{\Gamma} W dz - \int_{\Gamma} \frac{\partial U i}{\partial x} ds.$$
 (5.17)

5.5 Concluzii

În acest capitol au fost prezentate ipotezele de producere extensia fisurilor după diverşi autori.

Se observă că, ruperea apare după un număr cât mai mic de variații ale solicitării cu cât tensiunea maximă din secțiunea periculoasă are o valoare mai mare.

Ruperea la oboseală se produce în zona tensiunilor mari, unde anumiţi factori constructivi şi tehnologici conduc la apariţia microfisurilor.

Distribuția tensiunilor prezintă abateri, vârfuri de tensiune, față de cea teoretică. Vârfurile de tensiune pot constitui apariția microfisurilor care conduc în final la ruperea la oboseală.

Elementele unui ciclu de solicitare, sunt: tensiunea maximă sau limita superioară a tensiunii, tensiunea minimă sau limita inferioară a tensiunii, tensiunea medie, amplitudinea tensiunii sau a ciclului și coeficientul de asimetrie al ciclului.

Au fost în evidență o serie de diagrame de rezistență la oboseală care permit trasarea și citirea valorii rezistențelor la oboseală în funcție de natura ciclului de solicitare variabilă.

Cel mai frecvent utilizate sunt diagramele de tip Haigh şi diagramele de tip Smith. Obţinerea diagramei Smith se face prin determinarea unui număr redus de rezistenţe la oboseală, ceea ce conduce la diagramele schematizate. Dintre aceste schematizări au fost prezentate schematizări al diagramei Haigh şi schematizarea diagramei Smith.

Verificarea la solicitare variabilă constă în calculul coeficientului de siguranță. Au fost puşi în evidență acești coeficienți de siguranță prin diverse metode din care amintim, metoda Serensen şi metoda Soderberg.

În cadrul acestui capitol au fost prezentate și o serie de teorii privind calculul la rupere dintre care amintim teoria lui Griffith, teoria lui Orowan și teoria lui Irwin.

Au fost definite cele mai importante mărimi specifice teoriei fisurilor: factorul intensității tensiunii; viteza de eliberare a energiei; integrala J.

CAPITOLUL 6

ANALIZE COMPARATIVE PENTRU STRUCTURA OPTIMIZATĂ ȘI NEOPTIMIZATĂ A STRUCTURII DUBLULUI FUND

Objective Principale:

- ✓ Prezentarea efectelor solicitărilor variabile ce acţionează asupra structurilor;
- ✓ Moduri de poziționare a concentratorilor de tensiune;
- ✓ Determinarea factorului de concentrare a tensiunii;
- ✓ Stabilirea unor scenarii de fisurare pentru determinarea caracteristicilor principale a fisurii

6.1 Generalități

Analiza la oboseală se efectuează asupra unor elemente de legătură, de îmbinare, dintr-un ansamblu de structuri, de volum mare. Verificarea rezistenței la oboseală a unor elemente structurale se face prin cele două metode:

- Metoda factorului cumulativ de deteriorare D, având la bază criteriul emis de Palmgren - Miner prin proiectarea curbelor de tensiune – cicluri S-N.

- Metoda valorilor admisibile pentru variația tensiunilor maxime, la încărcări extreme, (Domnişoru, L., 2002).

În Figura 6.1 este reprezentat poziționarea concentratorului de tensiune și distanța t.

Figura 6.1 Poziționarea concentratorului de tensiune ("HOT SPOT"), (ABS, 2010)

 σ_{hot} - reprezintă valoarea tensiunii în zona cea mai solicitată, (în concentrator – hot spot);

 σ_{nom} - reprezintă tensiunea nominală, la o secțiune transversală sau dintr-o zonă locală,;

 $\sigma_{{}_{innod}}$ - reprezintă tensiunea maximă în sudură.

Pentru calculul factorului de concentrare a tensiunii trebuie să se țină cont de următoarele aspecte: discretizarea structurii; tipul de element folosit; dimensiunea elementului de discretizare; raportul dintre lungimea și lățimea elementului de discretizare; determinarea tensiunii.

Formula (6.1) permite calcularea tensiunii în cel mai solicitat punct.

$$\sigma_{hot} = 1.5\sigma_{0.5t} - 0.5\sigma_{1.5t} \tag{6.1}$$

6.2 Determinarea factorului de concentrare a tensiunii cu ajutorul MEF

Prima etapă în analiza fisurilor a fost aceea, în care s-au determinat zonele concentratoare de tensiune pentru fiecare model în parte.

A doua etapă constă în simularea a trei cazuri de producere și de extensie a fisurii, calculându-se astfel factorul de intensitate K la vârful fisurii și integrala J.

În urma analizei globale se poate observa poziționarea concentratorilor de tensiune, (Figura 6.2).

Pentru determinarea factorului de concentrare a tensiunii, a fost luată în calcul zona decupărilor tehnologice din întăriturile Dublului Fund (DF), având diverse raze de racordare.

Pentru analiza acestui factor de concentrare în cazul modelelor prezentate, s-au luat în discuție trei raze de racordare cu diverse încărcări și anume de la o forță de 25 kN ÷ 75 kN.

- Cazul 2D - R_200_neoptimizată;

- Cazul 2D - R_200_optimizată.

Figura 6.2 Evidențierea concentratorilor de tensiune, detaliul decupare Structura R 200

I.1 Discretizare grosieră - Structura R_200_neoptimizată

În acest caz structura R_200 a fost discretizată fin și grosier (Figura 6.3).

Pentru discretizare fină a structurii (Figura 6.3 a), dimensiunea elementului este de aproximativ 8 mm în zona decupării tehnologice, iar pentru structura discretizată grosier (Figura 6.3 b), dimensiunea elementului este de aproximativ 4 mm.

Figura 6.3 Discretizarea în cazul Structurii R_200

Tensiunile au fost selectate din zona adiacentă concentratorului de tensiune la 0.5t și respectiv 1.5t (Tabelul 6.1):

Cota pentru extragerea tensiunii	Forţa (kN)	Valoarea tensiunii (MPa)
0.5t		176.459
1.5t	25	74.083
Valoarea lui SCF _{grosier}		227.65
0.5t		352.918
1.5t	50	148.166
Valoarea lui SCF _{grosier}]	455.29
0.5t		529.378
1.5t	75	222.249
Valoarea lui SCF _{grosier}		682.94

Tabelul 6.1 Determinarea factorului de concentrare SCF_{arosier} – Structura R 200 neoptimizată

Factorul de concentrare a tensiunii pentru diverse încărcări s-a realizat prin interpolarea tensiunilor de la 0.5t și respectiv 1.5t (Figurile 6.4, 6.5, 6.6).

Figura 6.4 Interpolarea tensiunii la 0.5t și 1.5t

Figura 6.5 Interpolarea tensiunii la 0.5t și 1.5t

pentru Structura R_200_neoptimizată (forța de 25 kN) pentru Structura R_200_neoptimizată (forța de 50 kN)

Figura 6.6 Interpolarea tensiunii la *0.5t* și *1.5t* pentru Structura R_200_neoptimizată (forța de 75 kN)

I.2 Discretizare fină - Structura R_200_neoptimizată

În urma analizei numerice au fost extrase valorile tensiunii de la 0.5t și 1.5t, rezultând valoarea factorului de concentrare a tensiunii (Tabelul 6.2).

Cota pentru extragerea tensiunii	Forţa (kN)	Valoarea tensiunii (MPa)
0.5t		188.741
1.5t	25	58.334
Valoarea lui SCF _{fin}		253.94
0.5t		377.483
1.5t	50	116.668
Valoarea lui SCF _{fin}		507.89
0.5t		566.224
1.5t	75	175.002
Valoarea lui SCF _{fin}		761.84

Tabelul 6.2 Determinarea factorului de concentrare SCF_{fin} – Structura R_200_neoptimizată

Obținerea factorului de concentrare a tensiunii pentru diverse încărcări s-a realizat prin interpolarea tensiunilor de la 0.5t și respectiv 1.5t, (Figurile 6.7, 6.8, 6.9).

Figura 6.9 Interpolarea tensiunii la *0.5t* și *1.5t* pentru Structura R_200_neoptimizată (forța de 75 kN)

II.1 Discretizare grosieră - Structura R_200_optimizată

Tensiunile au fost selectate din zona adiacentă concentratorului de tensiune la 0.5t și respectiv 1.5t (Tabelul 6.3):

Cata nantru autra nana tanalun!		
Cota pentru extragerea tensiunii	Forţa (KN)	valoarea tensiunii (MPa)
0.5t		168.6095
1.5t	25	73.9405
Valoarea lui SCF _{grosier}	-	215.94
0.5t		335.886
1.5t	50	147.881
Valoarea lui SCF _{grosier}		429.89
0.5t	75	503.829
1.5t	15	221.821

Tabelul 6.3 Determinarea factorului de concentrare SCF_{arosier} – Strcutura R 200 optimizată

Valoarea lui SCFgrosier

644.83

Factorul de concentrare a tensiunii pentru diverse încărcări s-a realizat prin interpolarea tensiunilor de la 0.5t și respectiv 1.5t (Figurile 6.10, 6.11, 6.12).

Figura 6.10 Interpolarea tensiunii la 0.5t și 1.5t pentru Structura R_200_optimizată (forța de 25

Figura 6.12 Interpolarea tensiunii la 0.5t și 1.5t pentru Structura R_200_optimizată (forța de 75 kN)

II.2 Discretizare fină - Structura R_200_optimizată

În urma analizei numerice au fost extrase valorile tensiunii de la 0.5t și 1.5t, rezultând valoarea factorului de concentrare a tensiunii (Tabelul 6.4).

SCF _{fin} – Structura R_200_optimizată				
Cota pentru extragerea tensiunii	Forţa (kN)	Valoarea tensiunii (MPa)		
0.5t		195.496		
1.5t	25	61.0842		
Valoarea lui SCF _{fin}		262.7		
0.5t	50	390.992		

Tabelul 6.4 Determinarea factorului de concentrare

1.5t	122.168	
Valoarea lui SCF _{fin}		525.4
0.5t		586.488
1.5t	75	183.253
Valoarea lui SCF _{fin}		788.11

Factorul de concentrare a tensiunii pentru diverse încărcări s-a realizat prin interpolarea tensiunilor de la *0.5t* și respectiv *1.5t* (Figurile 6.13, 6.14, 6.15).

Figura 6.13 Interpolarea tensiunii la *0.5t* și *1.5t* pentru Structura R_200_optimizată (forța de 25 kN)

Figura 6.15 Interpolarea tensiunii la 0.5t și 1.5t pentru Structura R_200_optimizată (forța de 75 kN)

Deoarece în analizele cu elemente finite, precizia depinde de discretizarea adoptată, rezultă, cum se vede și în Tabelul 6.5 că în cazul discretizării fine factorul de concentrare a tensiunii a rezultat mai mare decât în cazul discretizării grosiere (Figura 6.16).

rabelui 6.5 Compararea rezultatelor in cele doua cazun de discretizare					
Structură	Forţă (kN)	SCF _{fin}	SCF _{grosier}	Abateri (%) SCF _{grosier} / SCF _{fin}	
P 200 noontimizată	25	253.94	227.65	10.35%	
	50	507.89	455.29	10.36%	

Tabelul 6.5 Compararea rezultatelor în cele două cazuri de discretizare

	75	761.84	682.94	10.36%
	25	262.7	215.94	17.80%
R_200_optimizată	50	525.4	429.89	18.18%
	75	788.11	644.83	18.18%

Figura 6.16 Rezultatele pentru cele două structuri neoptimizată / optimizată în cazurile cu discretizare fină și grosieră

6.3 Apariţia şi extensia fisurilor în zona decupărilor tehnologice din întăriturile Dublului Fund (DF). Determinarea parametrilor specifici propagării fisurilor

Analiza stării de tensiune de la vârful fisurii se realizează prin determinarea unor mărimi precum factorul de intensitate a tensiunii la vârful fisurii K_I, K_I și integrala *J* care caracterizează în general evoluția fisurii.

$$J(\alpha) \ge J_{cr}.$$
(6.2)

Pe baza calculelor numerice efectuate, rezultatele obținute au fost centralizate în diagrame în care s-a evidențiat variația integralei J cât și factorul de intensitate a tensiunii K.

Verificare valorii integralei J se poate face cu relația:

$$J = \frac{K^2}{E}.$$
(6.3)

unde: K - reprezintă factorul de intensitate a tensiunii; E - reprezintă modulul de elasticitate al materialului.

I. Apariţia şi extensia fisurilor în Structura R_200_neoptimizată. Determinarea parametrilor specifici propagării fisurilor

În Figura 6.17, s-a reprezentat poziționarea concentratorului de tensiune în urma analizei numerice.

Figura 6.17 Modelul cu evidențierea concentratorilor analiza 2D - Structura R_200_neoptimizată

Aşa cum este reprezentat în Figura 6.1, concentratorul de tensiune apare în zona de racordare.

a) SCENARIUL I

Scenariul I (Figura 6.18) constă în inițierea unei fisuri de lungimea unui element de discretizare.

Figura 6.18 Scenariul I de fisurare analiza 2D – Structura R_200_neoptimizată Rezultatele obținute atât pentru integrala J cât și pentru factorul de intensitate K sunt prezentate în Tabelul 6.6.

Scenariul I	Forţa (kN)	Modul I		Modul II		
		J	K	J	K	
		(N/mm)	(N∙mm ^{0.5})	(N/mm)	(N∙mm ^{0.5})	
	25	15.069	1778.9	10.319	1472.1	
	50	60.274	3557.8	41.275	2944.1	
	75	135.62	5336.6	92.869	4416.2	

Tabelu	l 6.6 Scena	riul I de fisurare	 Structura R_ 	200	_neoptimizată

b) SCENARIUL II

În cadrul acestui scenariu a fost considerat o propagare continuă a fisurii, lungimea fisurii fiind direcționată pe două elemente de discretizare, (Figura 6.19).

Figura 6.19 Scenariul II de fisurare analiza 2D - Structura R 200 neoptimizată

Rezultatele obținute atât pentru integrala J cât și pentru factorul de intensitate K sunt prezentate în Tabelul 6.7.

	Forţa (kN)	Modul I		Modul II	
Scenariul II		J (N/mm)	K (N∙mm ^{0.5})	J (N/mm)	K (N∙mm ^{0.5})
	25	23.783	2234.8	-5.9285	1115.8
	50	95.132	4469.6	-23.714	2231.6
	75	214.05	6704.5	-53.357	3347.4

Tabelul 6.	.7 Scenar	iul II de fisurare -	– Structura R_	_200_	_neoptimizată

II. Apariția și extensia fisurilor în Structura R_200_optimizată. Determinarea parametrilor specifici propagării fisurilor

Structura optimizată este cea cu raza decupării tehnologice de 200 mm (table grosime 11.5 mm) în care se vor respecta aceleași etape în vederea determinării parametrilor specifici propagării fisurilor.

a) SCENARIUL I

Scenariul I constă în inițierea unei fisuri de lungimea unui element de discretizare.

Rezultatele obținute atât pentru integrala J cât și pentru factorul de intensitate K sunt prezentate în Tabelul 6.8.

Scenariul I	Forţa (kN)	Modul I		Modul II	
		J (N/mm)	K (N∙mm ^{0.5})	J (N/mm)	K (N∙mm ^{0.5})
	25	16.074	1837.2	10.262	1468
	50	64.295	3674.5	41.046	2935.9
	75	114.66	5511.7	92.354	4403.9

Tabalul 6.8 Scopariul I de figurare Structure P. 200 entimizată

b) SCENARIUL II

În acest scenariu lungimea fisurii este direcționată pe două elemente de discretizare

Rezultatele obținute atât pentru integrala J cât și pentru factorul de intensitate K sunt prezentate în Tabelul 6.9.

Scenariul II	Forţa (kN)	Modul I		Modul II	
		J (N/mm)	K (N∙mm ^{0.5})	J (N/mm)	K (N∙mm ^{0.5})
	25	25.380	2308.7	-6.7906	1194.2
	50	101.52	4617.3	-27.162	2388.3
	75	228.42	6926	-61.115	3582.5

Tabelul 6.9 Scenariul II de fisurare – Structura R 200 optimizată

6.4 Procesarea rezultatelor numerice în cazul analizei producerii şi extensiei fisurii la structurile de Dublu Fund. Analiza 2D

În Figurile 6.20, și 6.21 sunt prezentate variația integralei J în funcție de raza de racordare și sarcina de încărcare pe lungimea unui element (scenariul I), respectiv pe lungimea a două elemente (scenariul II).

Figura 6.20 Variația integralei *J* în funcție de raza de racordare și sarcina de încărcare (Scenariul I)

Factorii de intensitate a tensiunii la vârful fisurii, K_I și K_{II} dau o imagine cu privire la încărcarea exterioară și la geometria structurii în care se consideră fisura. În cazul fisurilor 2D, (Figurile 6.22, 6.23, 6.24 și 6.25), se prezintă variația lui K_I , respectiv K_{II} în funcție de lungimea fisurii.

Figura 6.23 Variația factorului K_1 în funcție de lungimea fisurii (Scenariul II)

Figura 6.25 Variația factorului K_{II} în funcție de lungimea fisurii (Scenariul II)

6.5 Concluzii

În acest capitol a fost abordată metodologia de poziționare a concentratorilor de tensiune în zona decupărilor tehnologice, precum și determinarea factorului de concentrare a tensiunii pentru cele trei structuri luate în calcul.

S-au determinat astfel coeficienții specifici procesului de fisurare, care indică direcția de extensie a fisurii.

Stabilirea modurilor de fisurare necesară extensiei fisurii a constituit un punct important în evaluarea și determinarea degradărilor, ce survin în timpul funcționării structurilor confecționate din oțel.

De cele mai multe ori analiza fenomenului de producere şi extensie a fisurilor nu se poate realiza decât prin utilizarea unor metode numerice şi experimentale.

Aşa cum se poate vedea din Tabelul 6.11 (K_I) comparativ cu Tabelul 6.12 (K_{II}), factorul K_I are valorile cele mai mari. Deci posibilitatea de fisurare cea mai probabilă este cea de deschidere.

CAPITOLUL 7

COMPORTAREA ELASTO - PLASTICĂ A STRUCTURILOR DE NAVE. COMPARAȚII ÎNTRE STRUCTURILE OPTIMIZATE ȘI NEOPTIMIZATE

Objective Principale:

✓ Prezentarea generală a comportării elasto - plastice a materialelor

✓ Stabilirea metodologiei de abordare a studiului comportării elasto - plastice a structurilor de nave

✓ Calcule

7.1 Considerente teoretice

7.1.1 Noțiuni de mecanica mediilor continue

În ipotezele teoriei elasticității, relațiile dintre deformații specifice elastice $\{\varepsilon\}$ și tensiuni $\{\sigma\}$ sunt liniare, respectând legea lui Hooke:

unde: *E* - modulul de elasticitate al lui Young; *v* - coeficientul de contracție transversală (Poisson); $\varepsilon_x, \varepsilon_y, \varepsilon_z$ - deformațiile specifice liniare, elastice; $\gamma_x, \gamma_y, \gamma_z$ - lunecările specifice (tangențiale), elastice.

Exprimând tensiunile în funcție de deformațiile specifice din legea lui Hooke generalizată, obținem ecuațiile de legătură între tensiuni - deformații specifice:
$$\sigma_{x} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)e_{x} + \nu(e_{y} + e_{z})]$$

$$\sigma_{y} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)e_{y} + \nu(e_{z} + e_{x})] \quad (7.3)$$

$$\sigma_{z} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)e_{z} + \nu(e_{x} + e_{y})]$$

7.1.2 Cinematica deformării corpurilor elastice

$$\tau_{x} = \frac{E}{2(1+\nu)}e_{x}$$

$$\tau_{y} = \frac{E}{2(1+\nu)}e_{y}$$

$$\tau_{z} = \frac{E}{2(1+\nu)}e_{z}$$
(7.4)

Figura 7.1 Poziția punctului material (Oscar Björklund, 2008)

Figura 7.2 Descompunerea gradientului de deformare (Oscar Björklund, 2008)

Figura 7.3 Definirea deformaţiei totale (Oscar Björklund , 2008)

Pentru a putea descrie orice fel de mișcare, este necesară definirea unui sistem cartezian fix de coordonate definit prin originea O și vectorii directori e_1 , e_2 , e_3 (Figura 7.1).

Mai mult, se poate arăta că gradientul de deformare (Figura 7.2) poate fi împărțit într-un tensor de rotație ortogonală R și un tensor de întindere - comprimare U sau V.

În Figura 7.3 se definește deformația totală datorată deplasării din poziția de referință în poziția finală ca suma dintre deformația plastică F^{p} și deformația elastică F^{e} .

Câmpul de viteze Lagrangian v este definit ca $v_i = \frac{\partial u_i}{\partial t}$. Știind că vectorul X este independent de timp, gradientul vitezei poate fi definit ca: $L_{ij} = \frac{\partial v_i}{\partial x_j}$. Acest gradient al vitezei

poate fi scris sub forma sumei dintre tensorul de deformație D și tensorul de rotație W.

 $\frac{d}{dt}\int_{\Omega}\rho dV = 0$

$$L_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) + \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i} \right) = D_{ij} + W_{ij} (7.5)$$

7.1.3 Ecuații de conservare

În mecanica mediilor continue există patru legi de conservare:

1. Legea conservării masei;

2. Legea conservării impulsului ce poate fi definită ca:

3. Legea conservării momentului cinetic, care implică ca tensorul tensiunii Cauchy este simetric.

4. Legea conservării energiei cunoscută și ca prima lege a termodinamicii.

$$\frac{d}{dt}\left(\int_{\Omega}\rho edV + \frac{1}{2}\int_{\Omega}\rho v \cdot vdV\right) = \int_{\Omega}\rho b \cdot vdV + \int_{\partial\Omega} v \cdot vdS + \int_{\Omega} rdV - \int_{\partial\Omega} q \cdot ndS$$
(7.10)

unde: e este energia specifică internă pe unitatea de masă și q este fluxul de căldură.

7.1.4 Fizica mecanismului de rupere

Sunt două tipuri principale de rupere, rupere ductilă si rupere plastică.

- a) Ruperea plastică;
- b) Ruperea ductilă.

Suprafata ruperii ductile este caracterizată de buze de forfecare (Figura 7.4) asemănător unor forme de cupă și con.

Figura 7.4 Ruperea ductilă (Hertzberg R.W., 1996)

7.1.5 Modelul de rupere Johnson - Cook

Modelul de rupere a lui Johnson - Cook este un model care se bazează pe fenomenologia ruperii și a deformațiilor plastice.

$$D = \int \frac{1}{\varepsilon_f} d\varepsilon_e^p \tag{7.11}$$

unde ε_{f} este tensiunea echivalentă de rupere și $d\varepsilon_{e}^{p}$ este incrementul deformației plastice.

Expresia tensiunii echivalente de rupere este:

$$\varepsilon_{f} = \left(d_{1} + d_{2}e^{-d_{3}\frac{\sigma_{m}}{\sigma_{v}}}\right) \left[1 + d_{4}\ln\left(\frac{\varepsilon_{e}^{p}}{\varepsilon_{0}}\right)\right] (1 + d_{5}T)$$
(7.12)

$$\frac{d}{dt} \int_{\Omega} \rho v dV = \int_{\Omega} \rho b dV + \int_{\partial \Omega} t dS \qquad (7.7)$$

$$\sigma = \sigma^{T} S^{2} \mu \sigma = \sigma \qquad (7.9)$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^{\mathrm{T}} \text{ sau } \boldsymbol{\sigma}_{i} = \boldsymbol{\sigma}_{j} \tag{7.9}$$

(7.6)

(7.7)

7.2 Analiza neliniară a structurii de dublu fund

Pentru a putea efectua această analiză a fost folosit softul Abaqus CAE, produs de compania Dassault Systems. Modulul folosit a fost cel de explicit "dynamics", rezultatul fiind obținut printr-un proces iterativ în care la fiecare pas de timp se recalculează matricea de rigiditate a structurii elastice și se recalculează proprietățile materialului atunci când acesta trece din regimul elastic în cel plastic.

7.2.1 Crearea geometriei

Modelarea a fost făcută în AutoCad și importată în Abaqus CAE prin interfața ACIS. În Figura 7.5 este prezentată geometria modelului realizată în AutoCad, iar în Figura 7.6 este prezentată geometria din Abaqus CAE.

Figura 7.6 Geometria modelului din Abaqus CAE

7.2.2 Definirea proprietăților de material

Materialul folosit pentru această simulare numerică este oțel cu rezistenta ridicată pentru care tensiunea la care începe curgerea $\sigma_c = 355$ MPa și tensiunea la care începe ruperea este 500 MPa, modulul de elasticitate transversale (modulul lui Young) este $E = 210 \ GPa$ și coeficientul lui Poisson este v = 0.3. A fost definită densitatea materialului $\rho = 7850 \ \text{kg/m}^3$.

Pentru a putea simula numeric comportamentul plastic al materialului a fost folosită teoria lui Johnson - Cook definită anterior.

7.2.3 Discretizarea structurilor studiate

În cazul discretizării FEM s-a folosit metoda de mesh automată din Abaqus în felul următor:

- pentru fund dublu fund s-au folosit elemente 3D de tip HEX (hexagon cu 8 noduri) în care numărul de elemente HEX este de 128291 și numărul de noduri este de 230923;

- pentru o precizie mai mare pentru varangă s-au folosit elemente 3D de tip TET (tetraedru 4 noduri) care oferă o precizie mai mare la dimensiuni apropiate ale elementelor(183476 - elemente TET şi 421994 - noduri asociate acestor elemente).

Figura 7.7 Discretizarea structurii prin elemente finite folosită în studiu

7.2.4 Definirea condițiilor de margine și a încărcărilor

În Figura 7.8 sunt prezentate condițiile de margine și încărcarea exterioară aplicată static.

Figura 7.8 Condițiile de margine și încărcarea exterioară statică

7.2.5 Analiza rezultatelor

7.2.5.1 Structura dublului fund cu decupări tehnologice nebordurate

Interpretarea rezultatelor (Figura 7.9) este doar parțială deoarece acest model nu conține decât tensiuni și deformații date de solicitarea locală, nefiind luată în calcul solicitarea de încovoiere generală a navei care induce tensiuni suplimentare, în special în elementele structurale ale dublului fund.

De asemenea, se pot trage unele concluzii din analiza spectrelor de tensiune ale grupurilor de elemente, în special legate de modul de concentrare al tensiunilor în elementele structurale.

Figura 7.9 Starea de tensiuni în structura analizată

Pentru a putea urmări evoluția stării de tensiune, au fost alese patru elemente (Figura 7.10) pentru care se prezintă starea de tensiune la fiecare pas de timp (Figura 7.11).

Figura 7.10 Evidențierea elementelor luate în calcul atât pentru structura optimizată cât și pentru cea neoptimizată

Tensiuni Von Mises în elementul 214817 Tensiuni Von Mises în elementul 119460 **Figura 7.11** Starea de tensiuni în elemente selectate din structura în mărime reală neoptimizată

În Figura 7.12 este prezentată variația tensiunii Von Mises pentru structura în mărime reală optimizată.

7.2.5.2 Structura dublului fund cu decupări tehnologice bordurate

Se poate vedea că prezența bordurării decupărilor tehnologice are o influență foarte puternică asupra variației stării de tensiune (Figura 7.13).

Figura 7.13 Starea de tensiuni în structura cu decupările tehnologice bordurate

În Figurile 7.14, respectiv 7.15 sunt prezentate variațiile stărilor de tensiune Von Mises pentru structura în mărime reală neoptimizată/optimizată.

Figura 7.14 Starea de tensiuni în elemente selectate din structura în mărime reală neoptimizată având decupările tehnologice bordurate

Tensiuni Von Mises în elementul 214817

Tensiuni Von Mises în elementul 119460

Figura 7.15 Starea de tensiuni în elemente selectate din structura în mărime reală optimizată având decupările tehnologice bordurate

7.3 Concluzii privind comportarea elasto - plastică a structurii dublului fund

Analizând comportarea din graficele anterioare se pot trage următoarele concluzii:

Se poate observa că în jurul valorii de 220 MPa a tensiunii Von Mises materialul suferă o reașezare a rețelei cristaline. După depășirea acestei valori se poate vedea că materialul are o comportare oarecum liniar elastică. Acest lucru se poate observa în toate nodurile luate spre studiu.
Se poate observa că ruperea materialului se produce la tensiuni de peste 300 MPa. Oțelul naval folosit are limita de rupere 355 MPa.

- Din analizele efectuate și pe baza rezultatelor obținute se poate concluziona că metodologia concepută pentru studiul elasto - plastic al structurilor de nave este corectă. Rezultatele care se obțin folosind această metodologie pot fi folosite la optimizarea structurilor navale din punctul de vedere al greutății.

CAPITOLUL 8

CONTRIBUȚII ȘI CONCLUZII FINALE. PERSPECTIVE DE UTILIZARE A REZULTATELOR. DIRECȚII VIITOARE DE CERCETARE

8.1 Contribuții și concluzii finale

Lucrarea de faţă a abordat o tematică modernă, de actualitate şi mare importanță pentru proiectarea navală. Pentru rezolvarea ţelului propus s-a depus un mare efort pentru stabilirea metodologiilor de calcul numeric precum şi pentru validarea acestora experimental. Astfel lucrarea aduce o serie însemnată de noutăţi în domeniul calculului structurilor navale. Având în vedere studiile efectuate pot fi puse în evidență următoarele contribuţii personale:

1) S-a stabilit metodologia de abordare a calculului numeric specific și detaliat al structurii de dublu fund folosind Metoda Elementelor Finite (MEF) pentru structurile în mărime reală cât și pentru cea redusă la scară.

Pentru validarea rezultatelor numerice s-a conceput un program de modelare experimentală care a conținut două tipuri de modelări și anume una care folosește metoda Tensometriei Electrice Rezistive (TER) și una care folosește Metoda Optică.

2) S-a conceput un stand pentru realizarea verificării experimentale a variației stării de tensiune pe modelul experimental redus la scara 1:10, în vederea validării rezultatelor numerice.

În literatura de specialitate, nu este prezentată o procedură standard pentru testarea în condiții de laborator a structurii de dublu fund care a fost proiectată și realizată fizic. În Capitolul 2 al prezentei lucrări, a fost descrisă o succesiune de pași, care pot fi considerați standard, pentru testarea acestor structuri de dublu fund. Astfel au fost construite 3 modele experimentale având razele de racordare a decupărilor tehnologice de 15, 20, 25 mm.

Procedura de testare are următorii paşi:

- a) Realizarea unui stand de testare format din:
 - Structura dublului fund redusă la scara 1:10;
 - Cadru rigid de prindere a structurii și a sistemului de încărcare;

- Sistemul de realizare a sarcinii de solicitare format din: șurub cu două începuturi, sistem de prindere de cadrul rigid, dinamometru pentru măsurarea sarcinii;

- Sistemul tensometric de măsurare a tensiunilor format din: traductoare tensometrice cu baza de măsură de 10 mm și rezistența ohmică proprie de 120 Ω , aplicate pe partea opusă sistemului optic de măsurare, cabluri, punte tensometrică Spider 8 și laptop cu soft Catman Expres 3.1 pentru înregistrarea datelor măsurătorilor.

- Sistem optic de măsură Aramis HS produs de compania germană GOM - în care metoda în sine se bazează pe compararea în diverse stadii de solicitare a distantelor dintre puncte de reper.

b) Postprocesarea datelor experimentale - respectiv, determinarea tensiunilor si a deformațiilor maxime obținute cu sistemul ARAMIS H/S, și compararea cu rezultatele obținute prin MEF folosind software-uri specializate, SolidWorks Cosmos/M. În final după comparație, s-a concluzionat că modelul teoretic a fost corect configurat.

Abaterile deplasărilor și a tensiunilor Von Mises rezultate, folosind MEF și Metoda experimentală sunt mici, ceea ce înseamnă că aceste două metode au fost corect aplicate

Diferențele de valori obținute prin Metoda experimentală, comparativ cu Metoda Numerică, indică faptul că erorile de măsurare s-au datorat erorilor de model (cauzate de imperfecțiunile de model asociate măsurandului) și erorilor instrumentale (cauzate de mijloacele de măsurare). Utilizând acest echipament s-a observat că incertitudinea de măsurare se află între valori rezonabile.

Standul experimental conceput va putea fi folosit ulterior în cadrul altor cercetări ale comportării de structurilor sub acțiunea sarcinilor.

3) S-au elaborat noi modalități de abordare a subiectului optimizării structurilor și în directă corelare s-au elaborat noi metodologii de verificare a structurilor proiectate si optimizate.

În vederea determinării modului de variație a stării de tensiune din elementele componente ale structurii de dublu fund, s-au efectuat modelări numerice folosind programul SolidWorks Cosmos/M pe modelul redus la scară, deoarece metodologia de calcul numeric pe acest model poate fi validată experimental. Metodologia numerică elaborată și validată experimental a putut fi extinsă și la nava în mărime reală.

4) S-au realizat modelări numerice pentru determinarea influenței întăririi prin bordurare a decupărilor tehnologice în elementele componente ale structurii dublului fund. S-a demonstrat prin modelări numerice că întărirea acestor elemente prin bordurare conduce la micșorarea substanțială a tensiunilor locale din zona decupărilor tehnologice, micșorând în același timp probabilitatea apariției și propagării fisurilor.

Analizele numerice au fost realizate pe structurile de dublu fund în mărime reală optimizată / neoptimizată, sudate atât continuu cât și discontinuu cu sau fără rigidizarea decupărilor tehnologice.

Pentru modelarea prin MEF folosind programul SolidWorks Cosmos/M, s-au stabilit 3 cazuri de încărcare, acestea fiind determinate experimental.

Direcțiile de studiu au fost:

- Prin modelarea folosind MEF, cu ajutorul programului SolidWorks Cosmos/M, s-au obținut valori ale tensiunilor Von Mises pe zona decupărilor tehnologice atât bordurate cât și nebordurate;

-De asemenea au fost trase concluzii asupra modului de variație a tensiunilor pe modelul analizat și anume pe:

a) Structura dublului fund cu decupări tehnologice nebordurate sudate continuu si discontinuu, în acest caz se pot observa diferențe de până la 3% (Tabelul 3.6 și 4.6), explicația fiind dată prin discretizarea practicată în cele două cazuri, sudură continuă și discontinuă;

b) Structura dublului fund cu decupări tehnologice bordurate sudate continuu si discontinuu, în acest caz se pot observa de asemenea diferențe tot de 3% (Tabelul 3.8 și 4.7), explicația suplimentară față de primul caz este că prin prezența bordurării, elementele au fost mai bine legate în cazul sudurii discontinue;

c) Structura dublului fund cu decupări tehnologice bordurate / nebordurate sudate continuu şi discontinuu. Din analiza rezultatelor prezentate în Tabelele 3.9, 3.10, 4.8 şi 4.9, se poate vedea că bordurarea are o influență puternică asupra stării de tensiune, local în zona decupărilor tehnologice. În ambele cazuri înregistrându-se diferențe de aproximativ 60%, concluzia care se desprinde este aceea că decupările tehnologice trebuie bordurate.

5) S-a stabilit o metodologie pentru modelarea numerică a fenomenului de apariție și extensie a fisurilor.

Datorită variației tensiunii în cazul analizei rezistenței la oboseală, trebuie luate în considerare posibilele influențe ale concentratorilor de tensiune și modul în care aceștia modifică valorile rezistenței la oboseală.

Determinarea acestui factor de concentrare al tensiunii s-a făcut printr-o extrapolare liniară a tensiunii principale, calculat în cel mai solicitat nod.

Determinarea modurilor de fisurare a constituit un punct important în evaluarea și determinarea degradărilor ce survin în timpul funcționării structurilor de navă.

Analiza fenomenului de producere şi extensie a fisurilor se poate realiza doar prin utilizarea unor metode numerice şi experimentale.

S-a realizat analiza la apariția și propagarea fisurilor în zona decupărilor tehnologice. Știut fiind faptul că în general aceste decupări au forme rectangulare, s-a elucidat astfel complet influența mărimii razei de racordare asupra variației tensiunilor în zona acestora. O rază de racordare mare reduce riscul apariției și propagării fisurii prin reducerea concentratorului de tensiune. S-au realizat evaluări în acest sens.

După cum se poate observa din Tabelul 6.11 comparativ cu Tabelul 6.12, factorul de intensitate a tensiunii (K_{II}) are valorile cele mai mari, ducând astfel la concluzia că posibilitatea de fisurare cea mai probabilă este cea de deschidere.

6) S-a realizarea un studiu numeric privind comportarea elasto - plastică a structurii de dublu fund atât pentru cea proiectată cât și pentru cea optimizată, folosind softul Abaqus CAE, produs de compania Dassault Systems.

Rezultatele obținute din analizele efectuate pot conduce la concluzia că metodologia concepută pentru acest studiu este corectă și de asemenea poate fi folosită cu succes la optimizarea structurilor navale din punct de vedere al greutății.

7) S-a realizat o analiză economică a reducerii greutății navei în favoarea creșterii masei mărfii de transportat. Rezultă astfel o creștere a cantității de transportat cu 4.16%.

Din studiul aplicativ efectuat în această lucrare au rezultat date concrete referitoare la diferitele metode de lucru ce pot fi aplicate în parcurgerea procesului de optimizare a structurilor de nave. Studiul conține numeroase rezultate, metodologii de optimizare, reprezentări grafice, abordări, recomandări și concluzii, ca exemple metodologice, ce pot fi utile în departamente de cercetare – proiectare.

8.2 Direcții viitoare de cercetare

Ca rezultat al cercetării și încercării de a găsi noi căi de optimizare și de a recomanda noi principii, lucrarea de față, raportată la cercetările existente, se constituie într-un pas înainte, stimulând lărgire limitelor cunoașterii.

Aria de aplicabilitate poate fi extinsă și asupra altor structuri, deschizând astfel alte oportunități de cunoaștere.

Metoda de cercetare abordată îmbină elementele teoretice cu cele experimentale. Rezultatele evidențiate în această lucrare propun o nouă perspectivă corpului științific implicat în munca de cercetare – dezvoltare și deschide totodată noi direcții. Dintre acestea amintesc:

- elaborarea unei baze de date care să conțină toate informațiile preluate din cadrul determinărilor experimentale;

- aplicarea în mai multe subdomenii ale ingineriei mecanice ale principiilor de optimizare elaborate în cadrul acestei lucrări în scopul evidențierii unor eventuale îmbunătățiri, corectări, adăugiri;

- abordarea în profunzime a problematicii parametrizării împreună cu criteriile de optimizare pentru a elabora diverse proceduri de proiectare pentru fiecare structură în parte;

- luarea în considerare a combinării efectelor globale cu cele locale, mai ales în zonele structurale care absorb sarcini intense și variabile, induse atât de mediu cât și de funcționarea unor echipamente majore;

- luarea în considerare a unor criterii privind oboseala care vin în contradicție cu intenția optimizării;

- adaptarea tehnologiei de optimizare pentru situații practice de proiectare cu și fără respectarea regulilor Societăților de Clasificare.

Rezultatele obţinute în cadrul prezentei teze: "Contribuţii privind optimizarea structurilor de navă", sunt diseminate într-un număr de 20 şi într-un proiect al cărui director am fost contract tip Proiecte de cercetare pentru tineri doctoranzi (TD), CNCSIS PN-II-RU-TD, Cod Proiect TD – 263, Contract nr. 229/01.10.2007, partener Universitatea "DUNĂREA DE JOS " GALAŢI.

Bibliografie selectivă

- [1] *** Manual pentru calculul construcțiilor, Editura Tehnică, București, 1977.
- [A]
- [2] Adelman, H.M., R.T. Haftka, *Sensitivity analysis of discrete systems, in: M.P. Kamat (Ed.), Structural Optimization: Status and Promise*, vol. 150, Progress in Astronautics and Aeronautics, AIAA, Washington, pp. 291-316, 1993.
- [3] Ancău M., Nistor L., *Tehnici numerice de optimizare în proiectarea asistată de calculator,* Editura Tehnică, 1996.
- [4] Askeland D. R., *The Science and Engineering of Materials,* Sheffield: Nelson Thorens Ltd., 1984
- [B]
- [5] Beşchea N., *Rezistența materialelor capitole speciale*, Editura Didactică și Pedagogică, București, 1971.
- [6] Beghin D et al. Design principles and criteria, Report of ISSC Committee IV. 1, In: Moan T, Berge S, editors. Proceedings of 13 th ISSC, Oxford: Pergamon Press, vol. 1, p. 351-406, 1997.
- [7] Bellett, D., Taylor, D., 2006, *The effect of crack shape on the fatigue limit of threedimensional stress concentrations*, International Journal, p. 114-123, 2006
- [8] Bletzinger,K.U., E. Ramm, *Structural optimization and form finding of light weight structures*, Computers and Structures, 2001.
- [9] Buzdugan Gh., *Rezistența materialelor*, Editura Academiei RSR.
- [C]
- [10] Charmpis, D.C., Lagaros, N.D. and Papadrakakis, M., *Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization*, Comput. Methods Appl. Mech. Engrg., 2005.
- [11] Cheng, F.Y., *In Recent Advances in Optimal Structural Design*, ed., S.A. Burns (ASCE), 2002.
- [12] Constantinescu, I.N., Picu, C., Hadăr, A., Gheorghiu, H., *Rezistența materialelor pentru ingineria mecanică*, Editura BREN, București, 2006.
- **[13]** Curtu, I., Crişan, R., *Rezistența materialelor și teoria elasticității*, Universitatea "Transilvania", Braşov, 1997.
- [D]
- [14] Deb, K., *Multi-Objective Optimization using Evolutionary Algorithms*, John Wiley, New York, 2001.
- **[15]** Dennis, J.E. and R. B. Schnabel, *Numerical Methods for Unconstrained Optimization*, Prentice- Hall, Englewood Cliffs, NJ, 1983. Reprinted by SIAM Publications, 1993.
- **[16]** Domnişoru, L., Găvan E., Popovici O., *Analiza structurilor navale prin metoda elementului finit*, Editura Didactică și Pedagogică, București, 2005.
- [E]
- [17] Eschenauer H., Koski J., Osyczka A., *Multicriteria Design Optimization*, Springer-Verlag, Berlin, 1990.
- [F]
- [18] Faur N., *Elemente finite Fundamente*, Timişoara, România, 2002.
- [19] Fletcher R., *Practical Methods of Optimization*, John Wiley & Sons, New York, 1993.
- [20] Frieze, P.A., Shenoi, R.A. (editor), *Proceedings of the 16-th International Ship and Offshore Structures*, Congress ISSC, University of Southampton, 2006.
- [G]
- [21] Ghasemi, M. R., Structural Optimization of Trusses and Axisymmetric Shells Using Gradient-Based Methods and Genetic Algorithm, Ph.D thesis, University of Wales,

Swansea, UK, 1996.

- [22] Gill P.E, Murray W. editors. *Numerical method for constrained optimization*, New York: Academic, Press, 1974.
- [23] Goanță, V., *Mecanica ruperii,* Iași, 2006
- [24] Goodman, J., *Newton's method for constrained optimization*, Mathematical Programming, 33, pp. 162–171, 1985.
- [25] Griffith A.A., *"The phenomena of rupture and flow in solids",* Phil. Trans. Roy. Soc. London, A, 221: 163-198, 1920
- [H]
- [26] Hadăr A., Constantinescu I.N., Gheorghiu H., Coteţ C.E., *Modelare şi modele pentru calcule în ingineria mecanică*, Editura PRINTECH, Bucureşti, 2007.
- [27] Haftka, R.T. and Z. Gürdal, *Elements of Structural Optimization*: Third Revised and Expanded Edition, Kluwer Academic Publishers, Dordrecht, 1992.
- [28] Hernandez, S., *Optimum design of steel structures*, Journal of Construction Steel Research, Vol. 46, No. 1-3, pp. 374-378, 1998.
- [29] Herskovits, J., Mappa, P., Goulart, E. and Mota Soares, C.M., *Mathematical programming models and algorithms for engineering design optimization*, Computer Methods in Applied Mechamics and Engineering, v. 194/30-34 pp. 3244-3268, 2005.
- [30] Hughes, Owen F., Ship Structural Design, A Rationally-Based, Computer-Aided Optimization Approach, The Society of Naval Architects and Marine Engineers (SNAME), New Jersey, 1988.
- [I]
- [31] Iancu, C., *Asupra posibilităților modulului de optimizare al programului COSMOS/M,* 8 th International Conference, Târgu Jiu, Mai 24 - 26, 2002
- [32] Ingraffea A.R., Blandford G.F., "Automatic Modelling of Mixed-Mod Fatigue and Quasi-Static Crack Propagation Using the Boundary Element Method Fracture Mechanics", 4-th Symposium ASTM 791, 1983.
- [33] Irwin, G.R., *Relation of stresses near a crack to the crack extension force,* Proc. 9th Int. Congr. Appl. Mech, Vol. VIII: 245-251, University of Brussels, 1957.
- [J]
- [34] Jaap Schijve, *Fatigue of structures and materials -* 2010.
- [35] Journal of Optimization Theory and Applications, Springer Science+Business Media, New York, USA.
- [K]
- [36] Kirsch, U. (1993), *Structural Optimization: Fundamental and Application*, Springer-Verlag, London.Rajeev, S. and Krishnamoorthy, C. S., "Discrete optimization of structures using genetic algorithms", Journal of Structural Engineering, ASCE, Vol 118, No. 5, pp. 1233-1250, 1992.
- [37] Kong, J.S. and D.M. Frangopol, J., *Structural Engineering*, ASCE, 130, 2004.
- [L]
- **[38]** Laporte, E. and Le Tallec, P., *Numerical Methods in Sensitivity and Shape Optimization*, Brikhauser, 2002.
- [39] Lemaitre J., Chaboche J. / L., *Mechanics of Solid Materials,* Cambridge: Cambridge University Press, 1990
- [M]
- [40] Meske, R., et. al., *Topology and Shape Optimization of Components and Systems with Contact Boundary Conditions*, NAFEMS Seminar: Modelling of Assemblies and Joints for FE Analyses, Wiesbaden, Germany, 2002.
- [41] Mocanu, C. I., Rezistența Materialelor, Ediția a 2-a completată și revizuită, Editura Zigotto, Galați, 2007
- [42] Modiga M., *Mecanica construcțiilor de nave*, Univ. Galați, 1980.
- [N]
- [43] Nocedal, J. and Wright, S.J., *Numerical Optimization,* Springer Verlag, New York, 1999.
- [0]

- [44] Oscar Björklund, *Modelling of failure*, Master Thesis carried out at Division of Solid Mechanics Link^opings University March 2008 2008
- **[45]** Osyczka A., Krenich S., Krzystek J., Habel J., *Evolutionary optimization system (EOS) for design automation*, IUTAM Symposium on Evolutionary Methods in Mechanics, Cracow, Poland, 24-27 September, 2002.
- [P]
- [46] Papadrakakis, M., Lagaros, N.D. and Fragakis, Y., *Parallel computational strategies for structural optimization*, International Journal for Numerical Methods in Engineering 58(9), pp. 1347-1380, 2003.
- [47] Peterson, R.E., Stress Concentration Factors, NY: J. Wiley & Sons, 1974.
- [R]
- **[48]** Rao, S.S., *The Finite Element Method in Engineering*, Pergamon Press, New York, 1982.
- **[49]** Rice J.R., "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35: 379-386, 1968.
- [S]
- **[50]** Schiemann, L., *Formfindung und Formoptimierung von Schalen mit numerischen Hängemodellen und mathematischer Programmierung*, Diplomarbeit, Institut für Baustatik, Universität Karlsruhe, 2000.
- [51] Sima, V., Varga, A., *Practica optimizarii asistate de calculator*, Editura Tehnică, București, 1986.
- **[52]** Soegiarso, R. and Adeli, H., *Optimum load and resistance factor design of steel spaceframes structures*, Journal of Structural Engineering, Vol. 123, No. 2, pp. 184-192, 1997.
- [53] Stoicescu L., *Rezistența materialelor, vol. I, II,* Editura Evrika, Brăila, 2004.
- [T]
- **[54]** Thompson, Erik G., *Introduction to the Finite Element Method: Theory, Programming and Applications*, J., New York, Wiley & Sons Publishers, 2004.
- [55] Toropov, V.V., Mahfouz, S.Y. and Westbrook, R.K., *Discrete design optimization of 3-dimensional steel structures using a genetic algorithm*, 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, NY, USA, May, 1999.
- [V]
- **[56]** Vanderplaats, G.N., *Numerical Optimization Techniques for Engineering Design: ith application*, McGraw Hill, 1984.
- [57] Vanderplaats, G.N., *Numerical Optimization Techniques for Engineering, Design with Applications*, Vanderplaats Research & Development Inc., Colorado Springs, CO, 1999.
- [W]
- **[58]** Wang, D., Optimization of support positions to minimize the maximal deflection of *structures*, Int. J. Solids Struct. 41, 7445–7458, 2004.
- [59] Wright, M., and Gill, P., *Practical Optimization*. Academic Press., 1981.
- [X]
- [60] Xie, Y.M., and Steven, G.P., *Evolutionary Structural Optimization*, Springer, London, 1997.
- [Y]
- **[61]** Yang, R.J., Lee, A. And McGreen, D.T., *Application of basis function concept to practical shape optimization problems, Structural and Multidisciplinary Optimization*, vol.5, Numbers 1-2, DOI: 10.1007/BF01744696, 1992.
- **[62]** Yao, W., Himmel, N., *A new cumulative fatigue damage model for fiber-reinforced plastic,* Composite Scientific Technology, 2000.
- [Z]
- **[63]** Zhang Wenyuan Wu Zhifeng, *Genetic Algorithm for the Design of structural Optimization*, Journal of Harbin University of C.E. & Architecture Vol. 32 No. 4, Aug.1999.
- [64] ***SWCM, SolidWorks Cosmos/M FEM Program User Guide, Dassault Systems SolidWorks Corporation, 2008.

Curriculum vitae Europass

Informații personale							
Nume / Prenume							
Adresă(e)							
Telefon(oane)							
Fax(uri)							
E-mail(uri)							
Naţionalitate(-tăţi)							
Data nașterii							
Sex							

Cristea, Anişoara Gabriela

)
 Str. Ionel Fernic, Nr. 41, Bl. B3, Ap. 34, cod poştal 800572, Galaţi, România

)
 (40-23) 641 59 65
 Mobil: (40-72) 4220848

)
 (40-23) 649 54 00

)
 anisoara.cristea@ugal.ro, anacristea30@yahoo.com

-tăţi) Română

rii | 15.01.1976

Feminin

Asistent universitar / Facultatea de Arhitectură Navală

Locul de muncă vizat / Domeniul ocupațional

Experiența profesională

Perioada	2005 - prezent	2003-2005						
Funcția sau postul ocupat	Asistent ing.	Preparator ing.						
Activităţi şi responsabilităţi principale	Activități normate în statul de funcțiuni și activități de coordonare a proiectelor de licență Activități de cercetare: directorul unui contract de cercetare cu finanțare de stat	Activități normate în statul de funcțiuni						
Numele și adresa angajatorului	Universitatea "Dunărea de Jos" Galați, Domneasca 47, Galați RO-800201	Universitatea "Dunărea de Jos" Galați, Domneasca 47, Galați RO-800201						
Tipul activității sau sectorul de activitate	Învățământ, cercetare	Învăţământ, cercetare						
Perioada	Din iunie 2008 până în octombrie 2008							
Funcția sau postul ocupat	Junior Engineer							
Activități și responsabilități principale	Analiză structurală							
Numele și adresa angajatorului	Institutul de Cercetare și Proiectare pentru Construcții Navale, ICEPRONAV Galați, Str. Portului, Nr. 19 A, RO-800025, Galati, Romania, tel. (40-23) 641 59 65, fax (40-23) 641 78 36, www.icedesign.in							
Tipul activității sau sectorul de activitate	Departamentul de Analiză Structurală							
Perioada	Din august 2001 până în februarie 2003							
Funcția sau postul ocupat	Inginer							
Activități și responsabilități principale	Studierea pieței, Promovarea produselor							
Numele și adresa angajatorului	S.C. MARIANO S.A Strada Henri Coanda 5, Galaţi, 800522							
Tipul activității sau sectorul de activitate	Departamentul de Marketing							
Educație și formare								
Perioada	2005-2009							
Calificarea / diploma obţinută	Diploma de inginer în domeniul Arhitectura Navală							
Disciplinele principale studiate / competențe profesionale dobândite	Mecanica structurilor de nave, Dinamica navei în mare reală, Metoda elementului finit în construcții navale, Manevrabilitatea și guvernarea navei, Sisteme integrate de proiectare a instalațiilor navale							
Numele și tipul instituției de învățământ / furnizorului de formare	Universitatea "Dunărea de Jos" din Galați, Facultatea de Nave							
Perioada	2005							

Calificarea /	Curs	postuniversitar	de p	rofesionalizare p	siho	pedagogică și n	netod	ică			
diploma obținută	00.07		p			peasgeg.ea 3					
Numele și tipul instituției de învățământ / furnizorului de formare	Unive	Universitatea "Dunărea de Jos "din Galați, Departamentul Pentru Pregătirea Personalului Didactic									
Perioada	2002-2	2003									
/ Calificarea diploma obţinută	Diplomă de Master, specializarea: Construcții Integrate Navale										
Numele și tipul instituției de învățământ / furnizorului de formare	Universitatea "Dunărea de Jos" din Galați, Facultatea de Nave										
Perioada	2002										
/ Calificarea diploma obţinută	Curs de Inițiere în Contabilitate și Contabilitate Asistată de Calculator										
Perioada	1996-2001										
/ Calificarea diploma obţinută	Diplomă de inginer, specializarea: Inginerie Economică în Domeniul Mecanic										
Numele și tipul instituției de învățământ / furnizorului de formare	Universitatea "Dunărea de Jos" din Galați, Facultatea de Nave și Inginerie Electrică										
Aptitudini și competențe											
personale											
Limba(i) maternă(e)	Româna										
Limba(i) străină(e) cunoscută(e)											
Autoevaluare	Înțelegere Vorbire Scriere									Scriere	
Nivel european (*)		Ascultare		Citire	Participare la conversație			Discurs oral		Exprimare scrisă	
Limba engleză	C1	Utilizator elementar	C1	Utilizator independent	C1	Utilizator elementar	B1	Utilizator elementar	B1	Utilizator elementar	
Limba franceză	B1	Utilizator elementar	B1	Utilizator independent	A2	Utilizator elementar	A1	Utilizator elementar	A1	Utilizator elementar	
	(*) Niv	elul Cadrului Eur	opea	n Comun de Refer	rinţă	Pentru Limbi Stră	ine				
Competențe și abilități sociale	Spirit organizatoric										
Competențe și aptitudini tehnice	Analiză structurală: construcția navei, metoda elementului finit în construcția navei și instrumente CAD/CAE specifice										
Competențe și aptitudini de utilizare a calculatorului	Ire Cunoştinţe CAD/CAE pe programele: Cosmos/M (SRAC), MSC Marc-Mentat, AutoCAD, Tribon, MultiSurf, MicroStation, FEMAP, Safe Hull Cunoştinţe de programere în limbajele: C, C++, MS-VisualBasic, Matlab, pe sisteme de operare: MS-Windows/ MS-DOS Aplicaţii de Office/HTML: MS-Word, MS-Excel, MS-PowerPoint Comunicare electronică: Internet Explorer										
Informații suplimentare	Membru al asociațiilor profesionale: Membru în comisie examen de licență 2007, 2008 Acreditare domeniu Inginerie Navală și Navigație (iunie 2007) Membru în comitetul de organizare al Conferinței internaționale ARTENS – 12, organizată de către Universitatea "Dunărea de Jos" din Galați, 24 – 25 octombrie 2008 Membru AGIR – Asociația Generală a Inginerilor din România, 2007, 2008 Membru ARTENS – Romanian association of experimental stress analysis, 2008, 2009, 2010, 2011, 2012										

Ing. Buţurcă (Cristea) Anişoara-Gabriela

LISTA COMPLETĂ A LUCRĂRILOR ȘTIINȚIFICE PUBLICATE ȘI A PROIECTELOR DE CERCETARE-DEZVOLTARE REALIZATE PE BAZĂ DE CONTRACT

Articole publicate în reviste recunoscute CNCSIS

- 1. **Cristea Anişoara-Gabriela,** Costel Iulian Mocanu, *"Analysis of the endurance strength and calculation of the cumulative damage factor for double bottom structure",* The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.85, Galati University Press, 2013 (CNCSIS B+, cod 222, BDI: CSA), <u>http://www.naoe.ugal.ro</u>
- Cristea Anişoara-Gabriela, Costel Iulian Mocanu, "Experimental studies and computer simulation of stress in plates with round corners cuttings", International Journal of Modern Manufacturing Technologies ISSN 2067–3604, Vol. IV, No. 1 / 2012, pp. 47, (BDI), http://www.modtech.ro/2012
- Ţocu Florentina, Cristea Anişoara-Gabriela, Costel Iulian Mocanu, Lefter Silviu Viorel, "Comparative study to improve the mechanical characteristics on impact on plates made of fibbers reinforced glass", Constanta Maritime University Annals, Year XI, Vol.16, ISSN 1582-3601, pp. 185-190, "Nautica" Publishing House, 2011 (CNCSIS B+), <u>http://cmuedu.eu/anale.html</u>
- Cristea Anişoara-Gabriela, Ţocu Florentina, Costel Iulian Mocanu, "Computer study of stress state on a single floor plate using finite element method", Constanta Maritime University Annals, Year XI, Vol.16, ISSN 1582-3601, pp. 117-124, "Nautica" Publishing House, 2011 (CNCSIS B+), <u>http://cmu-edu.eu/anale.html</u>
- Cristea Anişoara-Gabriela, "Optimal sizing of the section in the system of equivalent girder", Constanta Maritime University Annals, Year XI, Vol.16, SSN 1582-3601, pp. 125, "Nautica" Publishing House, 2011 (CNCSIS B+), <u>http://cmu-edu.eu/anale.html</u>
- Cristea Anişoara-Gabriela, "Determination of the Induced Stresses at the Level of a Floor Using the Finite Element Method", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.175, Galati University Press, 2010 (CNCSIS B+, cod 222, BDI: CSA), <u>http://www.naoe.ugal.ro</u>
- Cristea Anişoara-Gabriela, Cristea George-Alexandru and Mircea Modiga, "Cost Estimate of an Optimized Ship Structure", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.49-57, Galati University Press, 2007 (CNCSIS B+, cod 222, BDI: CSA), <u>http://www.naoe.ugal.ro</u>
- 8. Cristea Anişoara-Gabriela, Cristea George-Alexandru, "The optimization of the production cycle by the critical way method", The Annals of "Dunarea de Jos" University of Galati,

Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.95-100, Galati University Press, 2004 (CNCSIS B+, cod 222, BDI: CSA), http://www.naoe.ugal.ro

- 9. Cristea Anişoara-Gabriela, "Calculation of the production cost in building a ship type carg 8500 tdw", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.89-94, Galati University Press, 2004 (CNCSIS B+, cod 222, BDI: CSA), http://www.naoe.ugal.ro
- 10. ACristea Anişoara-Gabriela, "Resistence analysis in the central regio of the cargo type ship 8500 tdw ", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.81-87, Galati University Press, 2004 (CNCSIS B+, cod 222, BDI: CSA), http://www.naoe.ugal.ro
- 11. Cristea Anişoara-Gabriela, "Resources required for founding a company of research and development", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.127-130, Galati University Press, 2003 (CNCSIS B+, cod 222, BDI: CSA), http://www.naoe.ugal.ro
- 12. Cristea Anişoara-Gabriela, "Economic efficiency in shipbuilding", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI-Shipbuilding (ISSN 1221-4620), pp.121-126, Galati University Press, 2004 (CNCSIS B+, cod 222, BDI: CSA), http://www.naoe.ugal.ro

Articole publicate în buletine ale simpozioanelor cu participare internațională

- 1. Cristea Anişoara-Gabriela, "Experimental studies regarding the optimization in the area of the cutting - outs for the ease of the reinforced frame" Modelling and optimization in the mechines building field, vol. 2, MOCM - 15 - Romanian tehnical sciences Academy, Bacău 2009, ISSN 1224-7480, pp.45 - 50.
- Cristea Anisoara-Gabriela, Cristea George-Alexandru, "Optimization of the cross section of 2. the profiles welded at one plating", 6th TEHNONAV International Conference on mechanical and naval engineering, Constanta 2008, 22-24 May 2008.
- Cristea Anisoara-Gabriela, "Cost estimating in the ship design", Modelling and optimization 3. in the mechines building field, vol. 2, MOCM - 14 - Romanian tehnical sciences Academy, Bacău 2008, ISSN 1224-7480, pp. 51-55, VIIth Conference with international participation Constructive and Technological Design Optimization in the Machines Building Field -OPROTEH 2008.
- 4. Cristea Anişoara-Gabriela, "Modelarea matematica pentru optimizare. Metodele criteriului de optimalitate. Proiectarea de egala rezistenta", Conferinta TMCR, Chisinau, 2007.
- 5. Cristea Anişoara-Gabriela, "Formulation of multicriterion design optimization", Conferinta TMCR, Chisinau, 2007.
- 6. Cristea Anişoara-Gabriela, "The fundamental principles of the management system of quality", Conferința TMCR, Chișinău, 2005, ISBN 9975-9775-8-3 (vol. 5), pp. 368-370.
- 7. Cristea Anişoara-Gabriela, "The procedures of the quality system", Conferința TMCR, Chişinău, 2005, ISBN 9975-9775-8-3 (vol. 5), pp. 366-367.

8. Cristea Anişoara-Gabriela, "Economic analysis of the quality of the products and services", Conferința TMCR, Chișinău, 2005, ISBN 9975-9775-8-3 (vol. 5), pp. 363-365.

Proiecte de cercetare - dezvoltare pe bază de contract

Projecte naționale

- 2005-2007 membru al grantului MCT-CEEX-M1/EU-SSS-91/PC-D07-PT26-400/2005, 1. "Concepte inovative de crestere a competitivitatii pentru doua clase de nave necesare reinoirii flotei europene europene de short sea shiping", UDJG-partener.
- 2. 2005-2007 membru al grantului CEEX 162/2005 COD PROIECT PC-D07-PT26-610, 19263/10.10.2005, "Serie de nave rapide de deservire (support ship) destinate creșterii siguranței și securității transportului în zone de risc (dezastre naturale, război, terorism, etc.)", UDJG-partener.
- 3. 2005-2007 membru al grantului CNCSIS A_C Cod33 Contract 2738/19.05.2006, 12022/19.06.2006, "Hidrodinamica vârtejurilor și aplicații", UDJG-partener.
- 2006-2008 membru al grantului MTC-CEEX-M1/ MARGAS-X2C16/PC-D07-PT26-4. 4409/2006, "Modele si metode numerice avansate in ingineria navelor de transport gaze lichefiate (LPG, LNG)", UDJG-partener.
- 2006-2008 membru al grantului MTC-CEEX-M1/ ROV UAUV101/PC-D07-PT26-1103/2006, 5. "Platforma autonoma sau comandata de la distanta pentru supravegherea submarina in cazul dezastrelor sau pentru combaterea actiunilor teroriste", UDJG-partener.
- 6. 2006-2008 membru al proiectului "Cercetări privind realizarea din materiale compozite a elementelor modulare în scopul creșterii rezistenței la șocuri a structurilor de protectie mecanică destinate parapetițor pentru drumuri", nr. Contract 211/2006.
- 7. 2007-2008 director al grantului CNCSIS PN-II-RU-TD, Cod Proiect TD 263, Contract nr. 229/01.10.2007, UDJG-partener, "Contribuții privind optimizarea structurilor de navă".