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Introduction 

Bioprocesses 
 

Bioengineering is a science that involves biological processes, processes in which 
microorganisms cultures develop. These are called biotechnological processes or 
bioprocesses. Biosynthetic processes (biodegradation), such as those for the production of 
enzymes, medicines (antibiotics, vitamins etc.), organic acids, biofuels, pigments etc. can be 
listed as biotechnological processes. Biomass production processes (e.g. growing 
mushrooms) and, not less importantly, biological waste water treatment processes should be 
mentioned. Specific bioprocesses are that they involve the development of living organisms 
that produce naturally different products of interest to human communities. Obviously, the 
development of micro-organism cultures requires the provision of specific environmental 
conditions in which they grow and have high productivity and increased yield. Hence the 
necessity of approaching biotechnological processes in an interdisciplinary manner, 
understanding that, besides biotechnology, the growth of microorganisms in good conditions, 
other sciences such as automation (computer modeling and control of bioprocesses) 
contribute significantly (programming of computer systems for the implementation of 
automated algorithms), chemistry, physics, mathematics etc. 

Generally, bioprocesses are carried out in specialized devices, called bioreactors. 
They are equipped with the equipment necessary for the development of cell cultures, 
including the automation elements (different transducers and specific execution elements). 
Structurally, a bioprocess involves two types of subsystems: the physicochemical subsystem 
and the molecular kinetics, which as a whole compete at the development of microorganism 
cultures. If the parameters of the physicochemical subsystems (pH, temperature, agitation 
speed etc.) it is not difficult to make their on-line measurement for the purpose of developing 
and implementing a driving algorithm (specific transducers at an acceptable cost price) in 
molecular kinetics subsystems, the problem  of on-line information acquisition  is much more 
difficult, meaning that the magnitude of interest (biomass concentrations, substrate, various 
metabolites, etc.) can not be measured on-line. The reason is related to the absence of 
sufficiently precise, reliable and not expensive cost-effective sensors that provide real-time 
information about these variables, information usable in control algorithms. Another 
possibility of data acquisition in the process is the use of state observers and parameters 
(state and parameter estimators). It is a frequent approach in control systems, generally 
good, but it is inconvenient to determine the mathematical model as accurate as possible to 
implement the estimator, and not to the ubiquity that biotechnological processes are non-
linear, strongly affected by parametric or model uncertainties (hidden dynamics) and 
measurement and process noise. It therefore points out that a very important issue in the 
good performance analysis and control of a biotechnological process is the measurement of 
the variables of interest on-line. 

In the research carried out within the present PhD thesis two main objectives were 
pursued, concretized in two research directions: the first objective is the realization of a 
system of measuring the variables of interest in bioprocesses in order to control it. Both the 
parameters of the physicochemical subsystem and, in particular, those in the molecular 
kinetics subsystem are concerned. In other words, it is desired to close the control loops 
associated with a bioprocess run in a bioreactor by means of measurement systems based 
on image processing techniques. A case study has been chosen: the growth of yeast cells of 
the species Sacharomices cerevisiae. The idea developed in the paper is to determine the 
concentration of cells of this species (biomass concentration) to provide the measured 
variable necessary for the operation of a bioprocess control algorithm by image processing 
techniques. 

The second direction of the research was the use of image processing techniques in 
the diagnosis of biotechnological processes. For this purpose, images were captured at 
certain time intervals using a microscope camera by a human operator, images that were 
then used in image processing algorithms for cell counting and then classifying them into 
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classes, such as: young cells, cells in division (capable of multiplying), mature cells, old 
cells, dead cells. 

The researches in this paper have an interdisciplinary character, being carried out 
within the Bioaliment research platform of "Dunarea de Jos" University of Galati, in 
collaboration with the staff of the platform laboratories. 

The thesis is structured as follows: an introduction, four chapters, conclusions and 
original contributions of the PhD thesis as well as two annexes. 

The introduction presents the motivation for choosing the research theme approached 
in the PhD thesis and its structure. 

Chapter 1 presents the current state of research on image processing applications in 
bioprocess management. This chapter includes the methods currently used in microscopy, 
image processing, and systems used in cell culture research. Also, there are a number of 
types of status observers and parameters used to measure the magnitude of interest in 
bioprocesses. 

Chapter 2 presents contributions to the application of image processing techniques in 
bioprocess control. An experimental stand consisting of a bioreactor and the associated 
equipment (heating jacket, agitator, temperature sensors, pH, turbidity), auxiliary systems 
such as: peristaltic pumps, bypass to take samples from culture, microscope, turbidity 
controller , the computerized measurement and control system consisting of a computer 
equipped with an acquisition board, a connection interface between the acquisition board 
and the bioreactor subassemblies, and, last but not least, the color camera for real-time 
acquisition of images. In order to link the bioreactor subsystems to the computer, it was 
necessary to provide a specific interface that would allow the acquisition of the input signals 
from the sensors, transmit them to the acquisition plate, and receive the output signals from 
the acquisition board and to send them to the execution elements 

Capturing in-situ images of real-time cell culture required  the design and realization of 
a new element specific to the biomass concentration sensor (flow and observation cell, also 
called bypass). For this purpose, more research and tests have been carried out to 
determine the best construction option to meet all the necessary requirements. Finally, a 
method for determining the biomass concentration, which can be used in an automated 
control algorithm, has been developed. Thus, an original method for determining the 
biomass concentration was developed by calculating the individual cell volume individually, 
summing the cell volumes and reporting  to the observation volume (image size, bypass flow 
thickness). 

In Chapter 3, the algorithm for biomass concentration determination has been 
validated by image processing techniques. In order to control the biomass concentration so 
that the system can operate fully automated, it was necessary to develop original software in 
Matlab environment that can retrieve the input data from the acquisition board, process them 
and determine real-time controls applied to the bioreactor's actuators. The optimal 
parameters of this software were determined on the basis of several tests and experiments. 
Practically, the algorithm for determining biomass concentration by image processing 
techniques has been applied to a yeast cell bioprocess of Sacharomices cerevisiae species. 
The algorithm for determining biomass concentration by image processing techniques was 
included in a biomass concentration control loop. 

Chapter 4 refers to the diagnosis of bioprocesses (in the sense of being able to 
appreciate the state of cell culture development) using image processing techniques. The 
diagnosis consists of analyzing the evolution of bioprocesses based on the physiological 
state of the cell culture. For this purpose, a new concept was introduced to characterize the 
physiological state of microorganisms, the degree of cell viability, which was determined 
using black and white images without using classical invasive techniques (staining with 
methylene blue, etc.). An original contribution is to develop an algorithm capable of 
determining the viability of the cell (live, dead), cell count, and biomass concentration of 
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more than 80% accuracy based on their brightness analysis. Validation was performed using 
a Phase-contrast Olympus BX41 microscope. 

Also, the development stage and cell classification were evaluated based on the 
information obtained from  color image analysis. An experiment was conducted  to determine 
the different stages of culture development on the yeast growth process of Saccharomyces 
cerevisiae on a standard culture medium MEA (Malt Agar Extract) from the Microorganism 
Collection of the BIOALIMENT Research Platform of the "Dunarea de Jos" University of 
Galati. 

Two experimental versions were carried out: one on Yeast Extract Glucose medium 
with an optimal nutrient content required for yeast growth and multiplication and the other on 
an auxotrophic G medium without nitrogen source and therefore poor in nutrients . Following 
this experiment, the five cell states mentioned above were identified. Parameters determined 
by the inner texture of the cells were analyzed and non-viable / non-productive cells found 
inside dark areas (called ergastic inclusions). The experiment had a duration of five days. 

An original algorithm has been developed to classify cells into five categories: young, 
mature, old, dead, using imaging techniques such as k-means clustering technique for 
identifying nucleotides within each cell. Validation was performed by several laboratory tests, 
such as optical density measurement (DO600) using the Hach Lange DR3900 
Spectrophotometer, cell count in Standard Plate Count (SPC) cells, measurement of 
nitrogen, glucose concentration, etc. This algorithm can be adapted to other types of cells 
similar to geometry. 

The last chapter is dedicated to the conclusions, original contributions and future 
research directions. The two annexes complement the PhD thesis with a number of 
elements regarding the equipment used in the experimental research within the thesis and 
the programs designed and implemented within it. 
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Chapter 1 
The current state of the imaging process in the monitoring, 

management of the process and the processes 
 

1.1 General biotechnological processes 

Biotechnological processes are processes in which microorganisms (cell populations) 
are cultivated in order to obtain various biologically products. They have evolved as methods 
of obtaining various food products, pharmaceutical products and compounds, pigments, 
enzymes, biofuels, biopolymers etc., but also for the regeneration and protection of the 
environment, using live cells for this purpose. These are waste water treatment processes 
(aerobic or anaerobic) using so-called active sludges for the treatment of residues in water 
for the purpose of discharging them into natural environments. Bioprocesses bring a number 
of advantages due to the relatively high rate of multiplication of microorganisms, the 
advantages being of an industrial scale and, not the least, by the fact that the products are 
obtained by natural way. 

A biotechnological process involves a set of chemical and biochemical reactions that 
take place in specific equipment called bioreactors. The bioreactor is an equipment that must 
provide conditions conducive to the development of the culture of microorganisms, that is to 
say, it must guarantee a non-limiting transfer of nutrients from the culture medium to the 
cells, regardless of how these devices have been designed. It has thus developed a science, 
called Bioprocessing Engineering, which specially deals with the study and operation of 
bioprocesses. Afterwards, there was a need to find ways to increase the efficiency of 
biotechnological processes, and in this sense, specialists in automation, computer science, 
mathematics, the field became interdisciplinary. It can be argued that mathematical modeling 
and automatic control methods have revolutionized the field of biotechnology, being further 
developed by mixed teams of specialists. In fact, the field of biotechnology has become a 
real challenge for automation specialists, with the challenges of designing and applying more 
and more evolved algorithms for bioprocesses, characterized by nonlinearities, uncertainties 
and process and measurement noises. 

            There are several criteria for the classification of biotechnological processes in the 
literature, two of which are: 

- After the presence or absence of oxygen in the culture medium [1], [2]: 

 Aerobic processes - where the microorganisms consume oxygen, which 
facilitates the transfer of electrons; 

 Optional anaerobic processes - in which electron transfer can be accomplished 
through both oxygen and intermolecular transformations; 

 Strictly anaerobic processes - where oxygen is absent from the culture medium, 
and the transfer of electrons is accomplished through inorganic compounds. 

- By bioprocessing mode: 

 Discontinuous processes (batch type or lot); 

 Semicontinuous (or fed-batch) processes - the process begins in batch mode 
and then switches to continuous feed mode; 

 Continuous processes. 

In this paper the process of growth of S. Cerevisae yeast was approached in batch 
mode and then in semicontinuous and continuous modes. At the beginning, the process was 
developed in a batch mode by introducing a yeast culture into a sterile environment, 
containing all the necessary nutrients, and its evolution is monitored until the cell population 
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decline. The batch mode is characterized by several intermediate development phases as 
follows: 

a. the lag phase: where the adaptation of the cell culture to the environmental 
conditions takes place, the population growth being practically zero; 

b. intermediate phase (start of growth): where the size of the cells increases and their 
multiplication begins; 

c. the exponential multiplication phase in which the number of cellules increases in 
geometric progression, so that the population doubles at regular intervals. This 
interval is called doubling time of biomass; 

d. slowing phase of multiplication in which, as the nutrients deplete and the inhibitor 
compounds are formed, the rate of propagation decreases; 

e. the stationary phase in which a maximum of cell culture is reached; 

f. the decay phase, in which cell death causes population decline until extinction. 

Figure 1.1 shows the sequence of the microorganism culture phases in batch 
development mode. It should be noted that these phases are found in other types of 
bioprocesses. 

 
Fig.1.1 - Representation of the cell number according to the typical phases of culture 

evolution in discontinuous systems 

Semicontinuous processes were performed by introducing a yeast culture into a 
bioreactor in a nutrient medium. During the evolution, the automatic system maintains the 
nutrient concentration to the preset value by means of an external pumping system as well 
as the pH and oxygen and nitrogen concentration at preset values. Continuous processes 
can maintain cell culture at a certain stage of development for an indefinite time as long as 
the yeast culture is fed with nutrient medium and at the same time eliminates an equivalent 
amount of used environment. At the same time, environmental conditions (temperature, pH, 
oxygen concentration, nitrogen, etc.) are constantly maintained. 

1.2 Problems on the measurement of the values of the bioprocesses interest 
rates 

Bioprocesses involve the development of cell cultures for production purposes. It is 
well known that cellular metabolism, which depends on their intracellular state and 
interactions with the environment, directly influences the productivity of bioprocesses. The 
operation of these processes is aimed at high productivity, and the efficient use of materials 
and energy resources is very important, which makes automation techniques (modeling and 
control) very useful and, at the same time, very necessary. 
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As mentioned, due to the complexity of these processes, the strong nonlinearities, the 
parametric or model uncertainties affecting these processes as well as the measurement or 
process noise accompanying the variables of interest, the modeling and control problems 
represent a real challenge for specialists. It is to be remembered that a slight change in cell 
culture conditions or crop contamination may cause changes in metabolism and hence a 
failure of the bioprocess with unintended consequences in the loss of important energy and 
material resources [3], [4]. 

An important problem of bioprocesses is the difficulty of measuring on-line the 
variables of interest due to the lack of dedicated sensors, reliable enough and at an 
acceptable cost price, which often makes it impossible to apply control algorithms to 
increase the bioprocess efficiency [5]. The use of software sensors (state and parameters, 
for example, measuring substrate and biomass concentrations, specific biomass growth rate, 
etc.) is a realistic solution in this case, and they are frequently used in control applications of 
bioprocesses [6]. The main difficulty that may arise in this case is the lack of a sufficiently 
precise mathematical model of the biotechnological process. 

Another problem that can be mentioned in bioprocesses is the diagnosis of the 
process in order to determine the productive potential of cell culture. It is very important for 
the operator to appreciate at every moment the physiological state of the culture and how it 
will evolve in terms of productivity and efficiency. For example, information on culture 
contamination (eventually early detection of contamination) and the physiological state of the 
culture (if the culture has a high potential for growth or regress) would be extremely useful. 

In the case of bioprocesses, on-line analysis of cells and obtaining data about the 
biomass kinetics results in better understanding and, obviously, better operating of the 
bioprocess. In collaboration, the conventional biomass growth rate is assessed by 
determining the dry mass in culture or by determining cell density, being off-line, time and 
effort-saving methods, requiring sampling, filtration or centrifugation, drying and weighing up 
to constant mass. While the determination of dry mass is relatively simple, cell density 
testing requires a counting chamber microscope and a trained eye to identify the cells in the 
field of view of the microscope. These determinations cannot be made on-line, limiting the 
possibility of automating the process. Alternatives to these methods can be the optical 
density determination (using a mass spectrophotometer) and the determination of the 
turbidity. However, determining cell density is the only method that can differentiate between 
cell and non-biological material, while other methods are not able to discriminate between 
them [2]. 
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Chapter 2 
Contributions for automatic measurement of biomass 

concentration in a bioprocess 

2.1 Introduction 

Use of biotechnological processes for the production of food, pigments, enzymes, 
pharmaceuticals etc. is a well-known practice, the engineering of this category of processes 
involves several sets of knowledge from the biological, technological (chemical, electrical, 
material science, hydraulics and electronics) as well as automation and computer science. 

The purpose of this chapter is to present a method of measuring the biomass 
concentration, which reduces measuring time, reduces foreign-induced uncertainty (crop 
contamination) and delivers the result without operator intervention, thus eliminating its 
subjectivity. The validation of the method and of the concentration calculation algorithm was 
performed by comparison with classical methods. 

For the measurement of biomass concentration, the current classical methods are 
grouped into: 

- Counting cells in the Thoma room; 

- Determination of dry mass (weighing); 

- Use of turbidity sensors; 

- Measurement of optical density. 

The first two categories require the intervention of an operator and are strongly 
affected by his subjectivism. Moreover, the duration of the measurement is high, sometimes 
comparable to the time constants of the driven process, so it is costly and inappropriate for 
automatic driving. The last two categories can be applied online, so they reduce human 
influence and are faster, so they are more suited to an automated process. 

Unfortunately, they cannot distinguish between bioreactor population cells and foreign 
bodies such as other invading cells, organic or inorganic impurities, materials deposited on 
the bioreactor wall, substances introduced during the process automatically or by the 
operator. As a result, their degree of certainty depends on the process being conducted and 
can be altered without the operator being warned. The classical methods are presented in 
more detail, since one of them will be used for the validation of the measurement algorithm. 

From the above, one can conclude that a measurement method that can be applied 
on-line with a reasonable price is needed, but which can make the difference between the 
cells of the culture of interest in the bioreactor and other cells (possibly impurities). The 
method proposed in this chapter is based on the analysis of cell images, their recognition 
and counting being similar to the way a human operator would do. Subsequently, based on 
this method, a biomass concentration transducer, suitable for the management of 
biotechnological processes (Chapter 3) will be designed and constructed. Examining the 
images taken from the microscope has the advantage of allowing the analysis of the 
biological state of the cells and the detection of foreign elements, as can be seen in Chapter 
4. 

2.3 General principles of automated biomass concentration measurement 

As anticipated, the proposed method consists of: 

- automatically extracting a sample from the bioreactor content and exposing the liquid 
suspension to the microscope; 

- acquisition of the image in the form of a formatted variable; 

- analyzing the image by detecting cell populations, separating cell images from other 
objects, and measuring their geometric dimensions; 



Baicu LaurențiuMarius Chapter 2 
 

5 

 

- calculation of the concentration based on geometric dimensions and transmission of 
its value to other subprograms. 

The essential part of the proposed measurement method is to analyze the image, 
similar to the way a human operator would do, with the mention that its subjectivity is 
avoided. In the image analysis, the following steps take place: 

- capturing an image of the sample; 

- bringing the parameters of this image to values that give the best results after 
processing; 

- separating the sub-images of the monitored population cells from the image  

- separating the sub-images of the monitored population cells from the image captured 
by the camera, neglecting (at the same time) the objects of no interest (impurities, 
etc.); 

- measurement of cell areas by automatic image analysis; - calculating cell volumes 
(this depends on cell shape);  

- the biomass concentration calculation, using the cumulative volume of the cells, the 
volume in which the image (observed volume) was taken and the known cell density. 

 

2.4 Algorithm for the measurement of biomass concentration by image 
processing 

To apply the concentration measurement method presented in the previous 
subchapter, an algorithm for image processing is required. In the following, the algorithm 
developed for the aforementioned cell population class is presented. This algorithm was 
published in the paper [72]. The exemplification of the algorithm is also applied to the 
species Saccharomyces cerevisiae, which is included in this class of populations. It is 
assumed that a microscope image has already been acquired and that the resolution 
provided by the camera is reasonable (areas of the order of one thousand pixels per cell). As 
presented in the measurement method, it is a matter of separating cell images from other 
impurities, measuring their areas, then determining cell volume and concentration. The 
algorithm diagram is shown in Fig. 2.9. 

In the first step, after the acquisition of the image, there is a change in global image 
parameters (brightness, contrast) so that the values of these parameters are as close as 
possible to the whole set of images. This change is required because the overall image 
characteristics may vary a lot, depending on content, focus etc., so that the processing 
results become inaccurate and negatively affect cell detection. 

In essence, the following scale transformations take place: 

- the luminance is changed so that the overall luminance average is close to a 
required value; 

- overall contrast is brought to a value that allows cell differentiation (the luminous 
parts of the cell approach white, the membrane and the dark organ of the cell 
approach black, and the environment has an intermediate luminance). 

Processing operations differ between the monochrome and the color variations. In the 
case of monochrome images, a specific method for eliminating the noise in the image, as 
well as unwanted reflections and impurities has been designed. In the case of color images, 
a different method was designed in view of the problems that arise in these images: a 
pronounced variation in brightness from the center to the periphery of the images and the 
focusing of the contours of the cells. These methods represent an important personal 
contribution and are detailed in Chapter 4. 
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Step 1: Initialize variables 
Step 2: Acquire the image 
Step 3: Determining the image 
parameters (contrast, luminance) 
Step 4: Segment the image 
Step 5: Recognize objects, tag and 
display detected cells 
Step 6: For each detected cell, steps 7-10 
will be applied 
Step 7: Determine area in pixels 
Step 8: Determine cell size (in 
micrometers) 
Step 9: Determine cell volume 
Step 10: Determine cell mass 
Step 11: Determination of total biomass 
Step 12: Determination of concentration 
Step 13 : Display the results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.9 - The algorithm diagram for the measurement of biomass concentration 
 

2.5 Implementation of the biomass concentration measurement algorithm 

The part of the algorithm running on the computer can be programmed in any high-
level language, but it has been preferred to use the Matlab environment, which has the 
entire set of operators for working with scalars and matrices, plus functions already 
implemented. 

 

2.6 Validation of the biomass concentration measurement algorithm 

Figures 2.16 - 2.17 and Table 2.2 show an example of calculating the biomass 
concentration using the algorithm described above. Fig. 2.16 is the image captured by the 
1.3 mpx color camera. Fig. 2.17 is the processed image of the algorithm in which cells are 
identified and numbered. Table 2.2 shows the amounts of interest calculated by the 
algorithm for each cell, as well as the total wet, dry biomass concentration. 
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  Fig. 2.16 The captured original image    Fig. 2.17 Processed image with cell identification 

 

Table 2.2 Dimensions of interest calculated using the algorithm 

Cell number 1 2 3 4 5 

Array [pixeli] 4951 6321 5996 4666 6875 

Array [micron^2] 17.824 22.756 21.586 16.798 24.750 

Diameter [microns] 4.764 5.383 5.242 4.6246 5.614 

Volume [micron^3] 56.605 81.657 75.441 51.789 92.625 

Total volume total of cells [cube microns] 358.1176 

Biomass concentration [gr/l] 0.4174 

Dry biomass concentration [gr/l] 0.0379 
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Chapter 3 
Contributions regarding realization of an automatic system for 

controlling the concentration of biomass using image processing 
techniques 

3.1 Introduction 

The application of these techniques has been done to determine the biomass 
concentration, but with a number of modifications of the algorithms projected in this work it 
can be applied to determine other variables, such as substrate concentrations, 
concentrations of metabolites etc. From the category of on-line measurement methods it can 
be mentioned: 

 Determination of dry matter, which is a time and effort-consuming operation, this 
method requiring sample acquisition, filtration or centrifugation, drying and weighing 
up to a constant mass; 

 Cell density determination, which requires a microscope equipped with a counting 
camera and a well-trained eye (by a specialist) to identify the cells in the field of view 
of the microscope. 

Basically, a technique based on a conventional light field microscope and image 
processing methods for determining the biomass concentration and other parameters in 
biotechnological processes have been developed. This technique serves to implement a 
real-time automated system that can be used to automatically adjust some bioprocess 
interest rates. 

3.2 The biomass concentration control system using image processing 
techniques 

The two subsystems that make up the yeast development system were highlighted: 

1. the microorganism kinetics subsystem and 

2. the subsystem related to the physico-chemical parameters of the yeast culture. 

Based on this decomposition, the control system contains three control loops as 
follows: the main loop is for the biomass concentration control, 2 secondary loops, the first 
for temperature control, and the second for the pH of the yeast culture control. The direct 
turbine command was considered for stirring the culture. The three control loops are 
considered independent, the temperature and pH loops having the role of providing a 
suitable operating point (a medium one) for the growth of the yeast culture of the species 
Saccharomyces cerevisiae. Fig. 3.2 shows the adjustment system in which a transducer 
based on image processing techniques taken from a microscope was used by means of a 
photodigital color microscope camera and processed with an average-performance PC 
equipped with an acquisition system. 

          

Fig. 3.2 – Biomass concentration control system.       Fig. 3.3 - Controlled bioreactor 

                                    diagram 
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3.2.2. Sensor for measuring biomass concentration based on image 
processing techniques 

The biomass concentration sensor consists of the following elements: a 60x lens 

microscope, a 1.3MPx photo/digital color camera, a bypass system (a flow and observation 

cell) and a peristaltic pump which recirculates the culture medium through the flow and 

observation cell.  

1. Microscope: It is intended to facilitate the acquisition of images of the suspension in the 

culture medium with an appropriate degree of magnification in order to identify the cells 

individually. The microscope used is a standard one with two eyepieces and illumination 

using a halogen bulb. The objective used was 60x. 

2. Digital Photo Camera: A 1.3 megapixel color digital camera has been used. The camera 
takes pictures with a period of about 10 minutes (see section 3.5). The magnification 
factor of the camera is equivalent to that of a 10x eyepiece and, therefore, taking into 
account the 60x lens of the microscope, it results that the images were captured with a 
magnification factor of 600x. 

3. Observation cell: allows periodic recirculation of the suspension in the bioreactor vessel 
in view of the acquisition of images. This is detailed in section 3.3). 

4. Peristaltic pump: is intended for recirculating the culture medium through the observation 
cell. It is a pump type SR25¬S300, presented in section 3.2.1. 

 

3.3 Flow and observation cell 

The flow cell is specially designed to be able to acquire real-time images taken from 
the culture medium, images of good quality for accurate image interpretation. The flow and 
observation cell, together with the photo-digital color camera, provide information to the 
computing system running the algorithm that analyzes images from the microscope and 
which ultimately determines the value of the biomass concentration. On this computational 
system is also implemented the biomass concentration control loop. The control variable 
provided by the controller is the dilution rate, which depends on the flow rate of the substrate 
metering pump to feed the bioreactor. 

 

Fig. 3.4 - Bypass principle: 1 - lower blade, 2 - upper blade, 3 - flow channel partition 
walls, 4 - inlet / outlet tubes, 5 - flow channel, 6 - flowing - tubes 

The entire flow path is completely sealed to eliminate the possibility of contamination 
of the culture medium. The flow and observation chamber is placed on the microscope table 
and can be fixed similarly to a normal microscope slide. Instead of one eye, the color camera 
is mounted and the flexible tubes necessary for the suspension recirculation path are 
connected. 

In the biomass concentration adjustment algorithm, the computer controls the pump to 
re-circulate the slurry in the bioreactor vessel at a predetermined time interval, then capture 
images using the color camera mounted on a microscope, analyze them, and, depending by 
the evolution of culture, will generate the commands necessary to control the biomass 
concentration. 
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3.4 Implementation of real time software for the bioreactor control system 

This was done in Matlab environment (RealTimeControl Toolbox - RTC) and uses 
drivers for communication with the Advantech interface board. The entire software structure 
works with a 1 second sampling period, with a graphical window viewing the evolution of the 
main parameters, as well as automatically saving as a file all the input and output 
parameters for further processing. 

If the shutdown command is typed, the whole data acquisition and processing process 
stops and resets all the output commands of the bioreactor execution elements so that it 
enters a queuing state. Basically, there is no maximum limit value for the duration of the 
experiment, which is limited only by the capacity of the substrate reservoir feeding the feed 
bioreactor.    

3.5 Transducer dynamics analysis 

To evaluate delay introduced by transducer, the following experimental  determinations 

were made: 

1. the time required for the cell suspension to flow from the bioreactor into the flow cell 
(experimentally determined using a dye agent); 

2. cell settling time in bypass to image capture (experimentally determined using 
successive images); 

3. the time to calculate the biomass concentration. 

        A preliminary operation required to analyze the dynamics of the biomass concentration 

transducer using image processing techniques was to determine the real characteristic of 

the peristaltic recirculation of the culture medium in the bioreactor and calibrate it. 

1. Determine the time required for the cell suspension to reach the bioreactor in the flow cell 

at the automatic pump start. 

Experiment no. 1: 

Initially, the peristaltic pump was started, which recirculated the bypass suspension 

using water, the pump was stopped, and a food color was poured into the water container 

to measure the amount of time the dye reached from the container in the bypass (Figure 

3.10) being approximately 1.5 minutes for a 2V pump control voltage, corresponding to a 

flow rate of 7ml / min, and a coating value of about 2 minutes was chosen. 

2. Determination of cell sedimentation time in bypass to capture images 

Experiment no. 2: 

The peristaltic biomass recirculation pump bypass was activated for two minutes, after 
which images were taken at intervals of 25 sec. After analyzing these images, it was found 
that biomass sedimentation ended after about 7 minutes. In the last image taken through 
real-time tracking of the flow of the suspension, the cells are in focus field stop moving and 
remain stationary. 

3. Determination of the biomass concentration calculation time 

This time depends directly on the computer system used in the application 
management process and can say, even in the case of a medium power, that time is 
insignificant compared to the other two delays set out in paragraphs 1 and 2. Basically, 2 
minutes were allocated for "washing" the bypass circuit and the penetration into it of new 
cells from the container bioreactor and 8 minutes to stop the movement of cells and disposal 
thereof in all resulting in a sampling period of 10 minutes to sampling in order to capture 
images. 
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3.6 Validation of use of the biomass concentration measurement transducer 
based on imaging techniques in the yeast growth system 

This was done in a control system, where the "classic" transducer (in the case of 
bioprocesses it can be a turbidimeter) was replaced by the bypass system presented in the 
previous section, together with the image processing algorithm. Particular emphasis was 
placed on the performance obtained by replacing a classical transducer or an observer with  
with a controller based on image processing techniques, with the advantages and 
disadvantages of using it in an automatic adjustment loop (ie on the principle of 
measurement included in the adjustment loop), and not on the control method itself. The 
design of the PI controller was experimentally performed. The purpose of the design was 
not the realization of the best possible controller but of a sufficiently efficient one for 
a control system in order to validate the control method using the proposed 
transducer in this doctoral work, based on image processing techniques. In the first 
phase, we identified the yeast growth process based on the process response. 

 
Fig. 3.33 - The block diagram of the biomass concentration control loop 

 

Experiment no. 3: 

The experiment was carried out continuously. The bioreactor was inoculated with 
0.074 g / l of S. cerevisiae yeast. The bioreactor was fed with a substrate flow rate of 1 ml / 
min, which corresponds to a supply voltage of the substrate pump 1V, the substrate having a 
concentration of 25 g / l (sugar, nitrogen and potassium) at a constant temperature of 27- 28 
° C for about 4 hours. At the time t=250 minutes, a step was applied to the feed voltage of 
0.4V substrate (from 1V to 1.4V), which corresponds to a variation in the flow rate from 1ml / 
minute to 5ml / minute ( Figure 3.34 - the graph drawn in green), with the use of a 4 x 3.5 
mm tube. 

Table 3.2 shows the numerical values of the biomass concentration and the supply 
voltage of the substrate pump with a period of 10 minutes, as shown in section 3.5 of this 
chapter. The images were captured using the 1.3 mpx color digital camera, mounted on a 
microscope. . These were processed with the yeast cell identification algorithm and 
determination of biomass concentration presented in section 2.3 - Chapter 2. 

In the following table, the two stationary regimes are marked in yellow: the first 
between 150 and 250 minutes, after which the peristaltic substation feed pump voltage step 
was applied and the second stationary mode obtained after applying the voltage step, 
between moments 550 and 730 minutes. From the table we can see that the stationary value 
of the biomass concentration is 0.5233 gr/l. 

Based on the data in Table 3.2 and Figure 3.34, it was represented in Fig. 3.41 
Biomass evolution, considering the origin of the coordinate axes point: t0 = 260 min, x0 = 
0.3030 gr/l. 
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Fig. 3.34 - Evolution of the biomass concentration (gr / l) 

Table 3.2: Biomass concentration determined for each image 

1v=~2ml/min and 1.4v=~5ml/min 

Im. 
Nr. 

Val. 
Conc. 
[gr/l] 

Cmd. p. 
[ml/min] 

Im. 
Nr 

Val. 
Conc. 
[gr/l] 

Cmd. p. 
[ml/min] 

Im. 
Nr. 

Val. 
Conc. 
[gr/l] 

Cmd. p. 
[ml/min] 

1 0.0747 2 26 0.3030 5 51 0.4591 5 

2 0.1235 2 27 0.3120 5 52 0.4613 5 

3 0.1476 2 28 0.2991 5 53 0.4767 5 
4 0.1932 2 29 0.3283 5 54 0.4870 5 
5 0.1943 2 30 0.3379 5 55 0.4919 5 

6 0.1926 2 31 0.3455 5 56 0.5220 5 
7 0.2037 2 32 0.3617 5 57 0.5164 5 
8 0.2078 2 33 0.3578 5 58 0.5307 5 

9 0.2077 2 34 0.3649 5 59 0.5292 5 

10 0.2212 2 35 0.3527 5 60 0.5142 5 
11 0.2400 2 36 0.3587 5 61 0.5203 5 
12 0.2661 2 37 0.3552 5 62 0.5258 5 
13 0.2637 2 38 0.3764 5 63 0.5178 5 

14 0.2671 2 39 0.3676 5 64 0.5268 5 

15 0.2783 2 40 0.3843 5 65 0.5292 5 
16 0.3064 2 41 0.3937 5 66 0.5260 5 
17 0.3013 2 42 0.3924 5 67 0.5234 5 

18 0.3073 2 43 0.4088 5 68 0.5270 5 

19 0.2971 2 44 0.4255 5 69 0.5175 5 
20 0.3000 2 45 0.4390 5 70 0.5189 5 
21 0.3016 2 46 0.4368 5 71 0.5290 5 

22 0.3069 2 47 0.4471 5 72 0.5184 5 

23 0.3195 2 48 0.4431 5 73 0.5194 5 
24 0.3103 2 49 0.4591 5 74 0.5298 5 
25 0.3206 2 50 0.4575 5 75   

 

The response to the step signal of the process thus represented leads to the following 
conclusions: 

1. the effect of the measurement noise is important, which is not surprising given the 

technique used for the assessment of biomass. In general, the noise level affecting 

biomass measurement in biotechnological processes is high; 
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2. the increase of the biomass concentration is approximately linear, which contradicts - to 

some extent - the technological considerations mentioned by the literature. Typically, if 

the experiment progresses normally, the time course of the concentration has an 

inflection point corresponding to the exponential growth of the cells; 

3. after the approximate linear concentration variation is exhausted, the entry into the 

stationary phase occurs quite suddenly, with slight over-regulation, which is not common 

and can be a consequence of the effect of the measurement noise. 

 

Fig. 3.41 - Evolution of biomass relative to origin t0 = 260 min, x0 = 0.3030 g/l 

         Using the experimental data available, classical identification procedures, ie the least 
squares method (matlab arx function) and the instrumental variables method (matlab iv4 
function) do not allow us to achieve satisfactory results. Under these conditions, two 
heuristic solutions were tested in order to obtain a linear model whose response to the signal 
step satisfactorily approximates the experimentally obtained response (Annex 2- Program 
2.1). The first solution is to obtain a linear model that achieves the approximation of the step 
signal response in Fig. 3.41, without imposing the requirement that this model be consistent 
with the usual processes revealed in bioprocessing modeling. Such a model has the transfer 
function 

   1 2
1

1

( ) 1 e
1

sK K
H s

s T s

 


                (3.1) 

in which K1 = 0.2 / 30; K2 = 1.1; t = 5 [h]; T1 = 30 [min] - (Annex 2 - Program 2.2). Fig. 3.42 
illustrates the quality of the approximation of the experimental response to that of the model 
(3.1). Even if a good approximation quality is obtained, the transfer function (3.1) has no 
support in bioprocessing modeling. 

 

Fig. 3.42 - The answer of the model (3.1),in red,and the experimental response from Fig. 
3.41 

Consequently, it is preferable to look for a model that reflects the usual phases of 
bioprocess dynamics, even when noise can mask - to some extent - these phases. 
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A typical response is the inflection point corresponding to the exponential phase. The 
specific part reflected by the experimental data consists in the existence of a broad 
extension area, which corresponds to the vicinity of the inflection point. A model that can 
offer a near-linear variation area close to the inflection point in the step signal response is 
the multiple-pole model commonly used in the Strejc process identification method [76].Dacă 
s-ar utiliza funcţia de transfer: 

2 2

0.3
( )

(100 1)
H s

s



     (3.2) 

for modeling the process, then the response of this system, y2 (t), together with the 
experimental response, yp (t), have the shapes in Fig. 3.43. In the mean area of the y2 (t) 
response the variation is close to the linear one, but the stabilization occurs at a higher value 
than the experimental stationary regime. 

   

 

 

Time evolution of the difference 

dif(t) = y2(t) – yp(t)     (3.3) 

shown in Fig. 3.44 by the Matlab stem instruction is approximated by the stepped signal 
response of the aperiodic element: 

3
0.08

( )
280 1

H s
s




      (3.4) 

 

Fig. 3.45 -The experimental response and the H4(s) system 

Under these conditions, the approximation of the experimental response is given by the 
relationship 

2 3( ) ( ) ( )py t y t y t       (3.5) 

where is the element's response to the transfer function. Consequently, the transfer function 
that approximates the process dynamics (at time scale in minutes) is: 
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Fig. 3.43 - The experimental 
response and H2(s) system 

0 5
0 

10
0 

15
0 

20
0 

25
0 

30
0 

35
0 

40
0 

45
0 

50
0 

-
0.01 

0 

0.0
1 

0.0
2 

0.0
3 

0.0
4 

0.0
5 

0.0
6 

0.0
7 

0.0
8 

timp 
[min] 

dif 

0 5
0 

10
0 

15
0 

20
0 

25
0 

30
0 

35
0 

40
0 

45
0 

50
0 

-
0.01 

0 

0.0
1 

0.0
2 

0.0
3 

0.0
4 

0.0
5 

0.0
6 

0.0
7 

0.0
8 

timp 
[min] 

dif 
Raspuns H3(s) 



Baicu Laurențiu Marius Chapter 3 
 

15 

 

2

4 2 3 2

0.3 0.08 800 68 0.22
( )

280 1(100 1) 2.8 6 66000 480 1

s s
H s

ss e s s s

  
  

   
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From Fig. 3.45 it is found that this transfer function satisfactorily approximates the 
dynamics of the bioprocess and leads to an evolution of the infiltration point biomass 
concentration (Annex 2 - program 2.3). 

 

3.7 Designing the controller for the biomass concentration regulation loop and 
its experimental validation 

The design of the controller was done by frequent procedures. The Nyquist characteristics of 
the process, when using models (3.1) and (3.6), are represented in Fig. 3.46 with black and 
blue respectively. If the same PI controller with the transfer function is used for these 
process models 

1
( ) 1R R

iR

H s K
T s

 
  

 
     (3.7) 

in which KR = 1.8 and TiR = 50 [min], the Nyquist characteristics of open loops are given in 
Fig. 3.47. The amplification and phase margins are mdB = 2.44, γ = 380, using the model 
(3.1), respectively mdB = 6.1, γ = 40.70, when using the model (3.6). 

In Fig. 3.48 it shows the system response in a closed loop with the PI controller having the 
above mentioned parameter values and the process transfer function H4 (s) - the relation 
(3.6), obtained with the simulink scheme in Annex 2 - Fig. A2.1. 

         

 

 

 

Fig. 3.48 – Closed loop system response 

From an informational point of view, the implementation of the automatic regulating 
system of the yeast growth process uses two functions: the first function is the acquisition of 
the images and calculates the biomass concentration (practically implements the biomass 
concentration transducer), and the second function implements the PI controller. 
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The two functions communicate with each other via a txt file. It should be noted that 
the synchronization problems between the two functions have been solved so that the 
adjustment algorithm works correctly.  

It also reads the reference from a txt file so that it can be changed in real time during 
an experiment. Taking into account a series of experiments previously carried out, an 
important detail was observed, namely that the direction of biomass evolution (increase or 
decrease) depends very much on the initial volume from which the experiment begins. 

If a small volume (0.5 liter) of the bioreactor is used, and the substrate flow entering 
the bioreactor is high, biomass tends to decrease due to the fact that the inflow tends to 
dilute biomass from the bioreactor. However, there are many factors that lead to the 
emergence of exceptional cases, where biomass, having a large amount of food and having 
the remaining parameters at "optimal" values, can increase.  

If a bioreactor with a relatively large volume (eg 5 liters) is used, if the substrate flow 
entering the bioreactor is high then the biomass concentration tends to increase because it 
will have a lot of food and the flow of the liquid at the inlet in the bioreactor will be small 
compared to the initial biomass volume, which makes it almost negligible. When the input 
flow rate is small, the trend is also increasing, but in a very long time, rather a stabilization at 
a certain value because the amount of food is small in relation to the number of cells it 
consumes, and the flow rate of the liquid entering with the substrate is negligible. 

Experiment nr. 4: 

Validation of the automated regulating system of yeast growth of S. cerevisiae was 
carried out in experiment no. 4. This was done in a closed loop, the KR and TiR parameters 
being those determined at the beginning of this section. Initially, it was started with a volume 
of 5 liters and a biomass concentration of 0.5 gr / l, followed by two reference steps of 0.4 
and 0.6 gr / l respectively (the curve represented in green in Fig. 3.49). Table 3.3 presents 
the values of the biomass concentration [gr / l] and the substrate feed pump [V], the 
substrate with the concentration of 125 gr / l, determined for each image, values obtained 
during the experiment. 

 

Table 3.3: The biomass concentration values [gr/l] and the output control to the substrate 
feed pump [ml/min] determined for each image 

 

Nr. 
Im. 

Val. 
Conc. 
[g/l] 

Cmd. 
pompă 
[ml/min]  

Nr. 
Im. 

Val. 
Conc. 
[g/l] 

Cmd. 
pompă 
[ml/min] 

Nr. 
Im. 

Val. 
Conc. 
[g/l] 

Cmd. 
pompă 

[ml/ 
min] 

1 0.5038 0 26 0.3854 0 51 0.5231 2.720 

2 0.4953 0 27 0.4060 0 52 0.5368 2.774 

3 0.5063 2.024 28 0.3837 0 53 0.5283 2.732 

4 0.4930 0 29 0.3821 0 54 0.5374 2.792 

5 0.5091 2.03 30 0.4117 0 55 0.5434 2.768 

6 0.5097 0 31 0.3863 0 56 0.5518 2.762 

7 0,5012 0 32 0.3938 0 57 0.5429 2.738 

8 0,4901 0 33 0.4154 0 58 0.5567 2.798 

9 0,5023 2.042 34 0.4208 2.612 59 0.5489 2.744 

10 0,5064 0 35 0.4244 2.642 60 0.5527 2.798 

11 0,4890 0 36 0.4470 2.684 61 0.5672 2.792 

12 0,4851 0 37 0.4484 2.624 62 0.5528 2.738 

13 0,4904 0 38 0.4570   2.666 63 0.5682 2.822 

14 0,4815 0 39 0.4621 2.672 64 0.5794 2.756 
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In Fig. 3.49a it can be seen that the system follows the setpoint, which means that 

both the biomass concentration transducer made on the basis of the image processing 
technique and the controller work correctly. In Fig. 3.49b, it is possible to observe the 
variation of the control value in flow units. 

 

Fig. 3.49. Evolution of biomass concentration (a) and control value evolution (flow rate of 
substrate feed pump - b) 

15 0.4771 0 40 0.4667 2.690 65 0.5859 2.708 

16 0.4692 0 41 0.4765 2.708 66 0.5930 2.684 

17 0.4716 0 42 0.4632 2.702 67 0.6067 2.648 

18 0.4615 0 43 0.4759 2.810 68 0.6139 2.582 

19 0.4581 0 44 0.4879 2.792 69 0.5991 2.546 

20 0.4498 0 45 0.5058 2.768 70 0.6033 2.612 

21 0.4521 0 46 0.5189 2.714 71 0.5970 2.594 

22 0.4350 0 47 0.5240 2.672 72 0.6030 2.624 

23 0.4246 0 48 0.5180 2.672 73 0.5972 2.594 

24 0.4174 0 49 0.5237  2.732 74 0.6032 2.624 

25 0.4018 0 50 0.5301 2.726    
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Chapter 4  
Classification of the physiological state of cells using image 

processing techniques 
4.1 Introduction  

Equipment where biological reactions or intense transformations, such as bioreactors, 
occur, must ensure a non-limiting transfer of nutrients from the culture medium to the cells, 
as well as favorable conditions for their development. 

The present paper aims to diagnose bioprocesses with a case study of S. cerevisiae 
yeast cultures, with an important personal contribution to the introduction of the notion of cell 
viability or the viability of cells. 

This is a physiological feature of cell culture which is a major concern when referring to 
bioprocesses, this feature being directly associated with productivity. Frequently, cell viability 
is assessed by microscopy by mixing the suspensions with specific reagents that stain the 
entire cell or parts thereof. Thus, dead cells will become colored because the membrane is 
damaged and allows the absorption of the dye inside, while the living ones will remain 
uncolored, allowing visual discrimination between living cells and death. For example, dyes 
such as methylene blue, evans blue, tripanic blue, iodine propidium, neural red, 
phenosafranines [79], [80], [81] are used to assess the integrity of the cell membrane. 
Otherwise, a number of specific dyes, such as fluorescein, oxonol, carboxifluorescein 
diacetate, etc. [82] and [83] were used to assess the metabolic activity of the cells. These 
methods are invasive and sometimes the small number of cells in the sample is rather 
unrepresentative for the entire population. 

Recently, the determination of cell viability through non-invasive imaging techniques 
was possible with dark field microscopy microscopes. In [84] a vector machine was used that 
used learning techniques to discriminate between living and dead cells. Two cultures of 
yeast Saccharomyces cerevisiae, the first formed only from living cells, the other only from 
dead cells, were used for this. 

In Chapter 4 of the Ph.D. thesis, a first bioprocessing analysis was carried out using 
images captured with a 1.3MPx black-and-white Olympus camera in an experiment in which 
a first level of diagnosis was sought, which consists of identifying and classifying cells in two 
categories: living and death respectively. Validation of the results was performed using a 
contrast phase microscope (contrast phase microscopy). As this first level of diagnosis is not 
enough to diagnose the evolution of the cell population, a yeast cell grading algorithm was 
developed using images captured with a 1.3 mpx color camera in a second experiment that 
lasted 6 days. Because the amount of information contained in color images is superior to 
black and white images, it allowed a better classification of the physiological state of the cells 
(a refinement of their state), with five cell categories: young, mature, in division cells in the 
multiplication phase), old, dead. Validation of experimental results was accomplished 
through numerous laboratory tests performed simultaneously with image sampling. 
 

4.2 Bioprocess diagnostic elements. Analysis of bioprocess evolution 
basedon physiological state of cell culture using black and white image 
processing techniques 

In this section, the possibilities to determine biomass concentration and cell viability in 
yeast cultures were tested without using classical invasive techniques. At this stage, an 
algorithm has been developed with the following capabilities:  

 to highlight viable cell features in images from a conventional light microscope. It is 

used to assist the operator when classifying viable and non-viable cell images. 

 count the cells in the image and evaluate the biomass concentration. 
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4.2.1 Materials and methods 

The biological agent used for this study was a Saccharomyces cerevisiae MIUG D9 
culture strain from the college of the Faculty of Food Science and Engineering, "Dunărea de 
Jos" University of Galati. The cells were initially cultured on Scharlau agar malt extract (malt 
extract - 30 g / l, soybean peptone - 3 g / l, agar - 15 g / l), and taken up in saline when 
necessary. Images were purchased with a Olympus BX41 phase contrast microscope with a 
1.3 MPx Olympus TV1X-2 monochrome camera. The imaging acquisition was performed 
with a 40x and 10x eyepiece, using both phase contrast microscope and bright field 
microscope. The light intensity between the two types of images required an adjustment: 
while in the brightness range of 2.5 (on a scale from 0 to 6) it is sufficient, phase contrast 
images require a level of 4 for to be visible. Images were purchased in grayscale and 
processed on a regular PC. 

The study contains several sets of images taken from different cultures of the species 
Saccharomyces cerevisiae. The first images were taken on fresh cultures, nutritionally fed, 
followed by the study of old crops left without nutrients for a certain period of time. In all 
cases, the images were taken in two ways: using the Phase-contrast filter of the microscope 
and without using the filter (bright field microscopy). 

Fig. 4.1 shows the 400x magnified image of a live cell and a dead cell taken in the 
phase contrast variant. The difference between a living cell and a dead cell can be easily 
noticed. The living cell has a well-formed membrane and the interior is bright, while the dead 
cell is darker indoors and is blurred / diffuse. Some of the dead cells also have fractures in 
the membrane and their intracellular matter is dispersed in the suspension. The cells of Fig. 
4.2 are the same as those in Fig. 4.1, the only difference being the lack of phase contrast 
filter. The two cells can be distinguished, but the differences are much smaller compared to 
the situation where the phase contrast filter was applied on a microscope. This is not a 
simple task for an operator to discriminate in images, such as that in Fig. 4.2, between viable 
and dead cells. 

   

Fig. 4.1- Comparison between a living cell and    Fig. 4.2 - Comparison between a living cell 
a dead one one in phase-contrast microscopy      and a dead one in light field microscopy 
 

The cell-enhancing algorithm was developed on bright microscopic fields. This extends 
the applicability of the algorithm to laboratories that do not have a phase-contrast 
microscope and can help the operator assess cell viability and evaluate biomass 
concentration. In order to exploit the properties of images containing cells, the improvement 
of the method consists of the following operations: image contrast adjustment, noise 
reduction, image segmentation, cell recognition and labeling, live cell recognition and 
counting, biomass concentration determination. 

4.2.2 The image processing algorithm 

In the classical method with methylene blue, it is added as a dye and then the image is 
analyzed optically under a microscope. Healthy viable cells will remain uncolored while dead 
cells will be stained in blue due to membrane fractures. 



Baicu Laurențiu Marius Chapter 4 
 

20 

 

On the contrary, compared to the 
classical method, the proposed algorithm 
improves the images of viable yeast cells 
without the use of methylene blue. It has been 
developed using a number of image 
processing functions and runs as a Matlab 
program that performs the following steps: 

Step 1: Adjust the contrast of the image 

Step 2: Noise reduction 

Step 3: Segmentation of  images 

Step 4: Display labeled cells 

Step 5: Extract individual cell images 

Step 6: Recognize living cells 

Step 7: Count the living cells 

 

 

 

 

Fig. 4.3 - The block diagram of the black and white image processing algorithm 

 

Depending on the result returned by the recognition function, the algorithm calculates 
and ndisplays the number of cells considered live in the Matlab command window. 

 

4.2.3 Experimental results of the cell recognition algorithm (experiment no5) 

Fig. 4.4 shows the original image that is displayed unchanged. After running the 
algorithm, a set of images was generated to illustrate the steps of the algorithm and the 
results obtained. 

In Fig. 4.5 shows the same cells (Figure 4.4) in phase contrast microscopy for 
comparison. The next step is the contrast adjustment, which provides a much better contrast 
image (Figure 4.6). Fig. 4.7 shows the segmentation stage. The result is a binary image. In 
Fig. 4.8 cells in the filtered gray shade image are framed in red borders as determined on 
the segmented image in step 5. The biomass concentration (in percent) is also displayed. 
From the image shown in Fig. 4.8 it can be seen that each cell is extracted and saved 
separately as a standalone image for further analysis in order to determine whether it is alive 
or dead. 

     

Fig. 4.4 - Image of yeast cells    Fig. 4.5 - Image of yeast cells in 
                 in bright field microscopy                       phase contrast microscopy 
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Fig. 4.6 -Image with adjusted contrast 

By analyzing these images, each individual cell can be compared to the image taken 
with the phase contrast filter microscope, and thus the accuracy of the algorithm is validated. 
By repeating these experiments on multiple images, both with and without phase contrast 
filter, the average error rate for identifying cell viability can be estimated. 

                        

Fig. 4.7 – Segmentad image  Fig. 4.8 - Identified cells (total cell number = 6,       
concentration = 0.32%) 

 

Fig. 4.9 contains the marked individual cells, which are classified as viable or dead. 
The algorithm found a dead cell (second) and, compared to the original phase-shifter image, 
it can be concluded that this result is correct. The algorithm ran on a set of grayscale images 
taken with an Olympus microscope. As a consequence of the trials, several sets of results 
were obtained. The result of step 7 of the algorithm gave an error of around 20%. Validation 
was performed by a human operator who recognized live cells and dead cells on the same 
set of images but using a contrast filter. 

 

Fig. 4.9 - Individually labeled and classified cells 
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4.2.4 Study of identification errors 

The main causes of errors are the large differences in brightness and contrast of the 
images taken at the microscope. These differences are due to several reasons, such as 
slate density, microscope focus, illumination, lamella characteristics (areas that allow more 
or less light to pass). Consequently, step 1 contains a brightness / contrast correction and 
the thresholds used in steps 3, 5 and 6 are determined experimentally, subject to changes 
for other species of microorganisms. 

Another cause of errors is impurities, such as dust dots on the lens, scratches and 
other impurities of the suspension, or possible optical imperfections of the lamella. These 
can generate errors in cell detection and background differentiation. An example is the 
image shown in Fig. 4.10 which contains 5 cells and the algorithm detects only four. 

                         

 Fig. 4.10 - Image obtained in the light field                Fig. 4.11 - Image with phase 
contrast microscopy of a cell phase yeast culture           filter of cells shows in  Fig. 4.10  

 

Fig. 4.12 - The result obtained by the algorithm with recognized and unrecognized cells  
 

If the same picture is taken but taken up using the phase contrast filter of the 
microscope (Figure 4.11), we can see three viable cells, a "less viable" cell, and a dead cell 
may be seen. The dead cell was not detected by the algorithm due to the dust removal 
thresholds in the image. These thresholds are guided by the amount of impurities and their 
brightness. The impurities of Fig. 4.10 were successfully removed but with the cost of an 
unrecognized cell. It can also be observed that after the filtering, the impurities present in the 
image are less noticeable than in the original one. In Fig. 4.12 one can see a 5-cell image. 
On average, only one cell was labeled wrong, therefore the error rate is estimated at 20%. 
The algorithm ran on a set of eight images, containing a different number of yeast cells and 
also having another brightness and contrast. 

 

4.2.5 Validation of results 

In carrying out this study, the same yeast cells, of the species Saccharomyces 
Cerevisiae, were grown from laboratory cultures. Various samples were analyzed at certain 
time intervals to produce the image sets. To validate the visual recognition of the 
characteristics and differences between living cells and dead cells, an "aged" cell culture 
(Figure 4.14) was used in which both live and dead cells were identified. 
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In this figure, obtained through phase contrast microscopy, the live cells were indicated 
by the border. The culture in the original image (Figure 4.14) was left in the same position on 
the microscope slide for 5 minutes. 

 

Fig. 4.14 - Live yeast cells (borded) from the initial culture 

Due to the heat generated by the illumination of the microscope (halogen bulb 
illumination), the temperature of the suspension increased, generating unfavorable 
conditions for culture, which at that time caused the death and decomposition of cells. As a 
result, a new image was taken (Figure 4.15) where the characteristics of the same cells in 
the original image can be observed. 

It was found that much of the initially living cells died within this time frame, displaying 
the same visual characteristics as those originally dead. At the same time, some dead cells 
have entered the decomposition phase, part of their internal content (nucleotides), spreading 
outward, along with the cytoplasm, due to breakdown of the cell membrane. In the initial 
figure, 8 living cells were identified and, after heat stress, only two living cells were identified, 
the remaining 6 cells died, some also entering the decomposition phase. Thus, the visual 
characteristics specific to the dead cells (color, lack of external aura on the outline), as well 
as those in the decomposition phase (the scattering of the cell contents outward) were 
validated. 

 

Fig. 4.15 - Yeast cells subjected to thermal stress (in the red border are cells initially living - 
now dead, in the yellow border are cells remaining alive due to heat stress) 

 

4.2.6 Presentation of the processed image set 

Fig 4.16 represents the initial image taken using the bright field microscopy 
technique.Fig. 4.17 is used to validate algorithm results. It can be seen that all the yeast 
cells in this image are alive due to the presence of the white aura around the cell margins 
and their well defined interior. 
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- First image: 

 

Fig. 4.16 - The initial image taken using the bright field microscopy technique 
 

    

    Fig. 4.17 The initial image taken using        Fig. 4.18 - Image with adjusted contrast 
    contrast phase microscopy 
 
Fig. 4.18 represents the result of the first stage of processing the algorithm to help 

correct cell identification and to distinguish background and impurities from them. 

Fig. 4.19 represents the results from threshold segmentation. 

Fig. 4.20 represents the result of applying the bwlabel function and shows the 
identified and labeled cells. 

Fig. 4.21 shows a series of cells identified and classified from the processed image 
as well as the color coefficients calculated by the algorithm. 

    

          Fig. 4.19 -Image resulting fro                Fig. 4.20 - Cells identified (total number of  
segmentation               cells = 6, concentration = 0.254%) 
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Fig. 4.21 - Individually identified and classified cells 
 
For the error calculation, it can be seen that of the 6 identified cells, two are mistakenly 

classified as dead, so the error rate is 33%. 

- The second image:   

    

Fig. 4.22 - The initial image taken using  Fig. 4.23 The initial image taken using 
 bright field microscopy technique       contrast phase microscopy technique 
 

    

Fig. 4.24 - Image with adjusted contrast.          Fig. 4.25 - Image resulting from segmentation 
 

 

Fig. 4.26 – Identified cells (total number of cells = 5, concentration = 0.324%) 
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In this case, a detection error is also present. We can see 6 yeast cells in the image, 
and the algorithm recognizes only 5 of these, the sixth being considered impure and thus 
excluded. Of the 5 detected cells, only 4 were correctly classified. 

 

Fig. 4.27 - Individually identified and classified cells. 

 

4.3 Evaluation algorithm for the development stage and classification 
based on information obtained from color image analysis 

An experiment (Experiment No. 5) was carried out with the main purpose of 
determining the different stages of yeast culture evolution by analyzing the color images. For 
the study, all yeasts of Saccharomyces cerevisiae, pure culture on the standardized MEA 
(malt extract agar) medium, from the Microorganism Collection of the Bioaliment Research 
Platform of "Dunarea de Jos" University of Galati [90] were used.] 

 

4.3.1 Materials and methods 

Two experimental versions were performed: one on yeast extract glucose (YEG) 
medium with a favorable nutrient content required for yeast cell growth and multiplication, 
and the other on a auxotrophic G-free nitrogen medium (extract of yeast), having only the 
glucose source (glucose) required for basic cellular energy metabolism. For both media an 
inoculum of 1.76 • 106 ufc / ml (ufc - colony forming units) was used. 

Five conditions have been determined in which cells can be found: young cells, mature 
cells, cells in the division, old cells and dead cells. To describe these states, two sets of 
parameters were used: Cell size (small, large, very large - corresponding to cells in the 
division). The second set of parameters is determined by the inner texture of the cells. It has 
been found that cells within which there are dark areas (due to elements called ergastic 
inclusions) are stress cells or, in other words, non-viable, unproductive cells. 

Cell classification criteria have been developed on the basis of several laboratory 
analyzes, such as: 

 optical density measurement (DO600) using the Hach Lange DR3900   

Spectrophotometer (Figure A1.23, Appendix 1); 

 cell count in Petri dishes with standard agar (SPC); 

 measurement of nitrogen and glucose concentration. 

All laboratory analyzes were performed daily, at the same time as the sampling of cell 
cultures. 

To reduce statistical errors, the method of inoculating two Petri dishes in each decimal 
dilution was used in parallel and the arithmetic mean of the highest dilution plate was 
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calculated in which the number of colonies per plate did not exceed 300. The result, viable 
cells of the S. cerevisiae species (N), was expressed in μg / ml according to the formula: 

N(ufc/ml) = 
         

   
     (4.5) 

where n1 and n2 represent the number of colonies in the two plates in which the count was 
made, and d is the dilution factor. 

A microscope equipped with a color digital camera with a resolution of 1.3 mpx was 
used to capture images. The images were purchased using a 60X lens and a color camera 
with a magnification factor equivalent to a 10X eyepiece. The light intensity of the 
microscope was set to its maximum value and remained unchanged during the experiment. 
Images were purchased in RGB mode and processed with a regular computer. Images were 
captured using Saccharomices Cerevisiae yeasts. 

The first medium was a growth-enhancing medium containing all the necessary 
nutrients (YEG - yeast extreme glucose). The second was a nutrient-free (G-glucose 
medium) nitrogen-free medium and containing a higher glucose concentration to see how 
yeast reacts in an unfavorable environment. Both media were inoculated under the same 
sterile conditions (standardized inoculation was performed using a Thoma cytometry). For 
culture, a Medline SI-300R shaker (Fig. A1.24, Appendix 1) was used with a set temperature 
of 25 ° C and a speed of 150 rpm. The experiment lasted 6 days, during which the images 
were taken daily using the two media (Figure A1.25, Appendix 1). On each microscope slide, 
the lens was moved to 30 to 50 points so that the images purchased were representative of 
the entire surface of the lamella. 

Fig. 4.29 shows a comparison between different stages of evolution of the same crop. 
The images were taken on different days and captured with a magnification factor of 600X. 
Differences between cells can be easily observed. It can be seen that end-of-life or stressed 
cells, such as lack of nutrients, develop a dark inside structure, and rarely the membrane 
becomes irregular, not well-contoured. 

The cells in this state are no longer productive, approaching the end of life, some of 
which are already dead, which can be seen in Fig. 4.29 and Fig. 4.30. This latency was 
confirmed by all laboratory tests performed at the same time as capturing images. 

 

Fig. 4.29. Comparison between different stages of yeast cell evolution 

 

Fig. 4.30 - Old / dead cells and the same cells stained with methylen blue 
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Fig. 4.31. A - Dead cell (normal + methylen blue), B - Old cell (normal + methylen blue). Two 
dead cells stained with methylen blue 

 

In the first line of Fig. 4.31 there are two types of cells: one (A) showing an irregular 
membrane, which in this case was found to be dead following the use of the blue-blue 
method and the other, (B) - the old cell that turned out not to be still dead. In the second line 
there are two different cells with changes in the membrane structure of the same type with 
the first line cell (A), which have been found to be dead using the blue-staining method. 
Both the experiments and the image processing algorithm using color images were also 
exposed in [92], indexed by ISI Proceedings and IEEE-Xplore. 

 
4.3.2 Image processing algorithm 

The classification algorithm is based on our research and uses the images obtained 
with an ordinary microscope and a color camera. The main purpose is to be able to 
recognize viable cells as compared to the old ones (unproductive) and, secondarily, to 
classify the stages of cell evolution, such as: young, in division, mature, old, dying. In order 
to achieve the proposed goals, the algorithm has the following objectives: 

 adjusting the luminance and chrominance of the color image; 

 reduction of noise; 

 image segmentation; 

 display labeled cells 

 extracting individual cell images; 

 recognizing the characteristics of each cell. 

The objectives of the proposed algorithm are: 

1. Analyze a series of microscopic images to extract images of individual cells; 

2. Improvement of the relevant graphical properties of cell images in order to help the 

operator recognize the status of each cell; 

3. Extracting cell characteristics, which are then useful for automated cell viability 

classification. 

This algorithm has been developed from the previous version and uses new image 
processing methods, according to the new final objectives. It was tested using the Matlab 
environment and its corresponding functions. The algorithm is shown in Fig. 4.32. 

At this stage, cells are classified. For this purpose, individual images of previously 
saved cells are converted into grayscale images. Using k-means clustering, new images of 
individual cells are obtained. They are subject to a contrast adjustment. The cell images are 
first segmented and new images are obtained, from which the contour, area, and brightness. 
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Step 1: Adjust the contrast and 
chrominance of the image 
Step 2: Noise reduction 
Step 3: Segment and filter images 
Step 4: Display labeled cells 
Step 5: Extract individual cell images 
Step 6: Recognize individual cell 
characteristics  
 
At this stage, cells are classified. For this 
purpose, individual images of previously 
saved cells are converted into grayscale 
images. Using k-means clustering, new 
images of individual cells are obtained. 
They are subject to a contrast adjustment. 
The cell images are first segmented and 
new images are obtained, from which the 
contour, area, and brightness. 

 

 

Fig. 4.32 - The block diagram of the color image processing algorithm 

The threshold was experimentally set at 0.3 and the minimum area of 30000 pixels. 
The ratio between the cumulative area of detected nucleotides and the surface of the whole 
cell represents the final characteristic, named as ratio: 

      
∑             

         
      (4.14) 

This feature is useful for classifying cells as young, mature, old and dead. The 
classification conditions are as follows: if the cell surface is less than 8500 pixels, then the 
cell is young, otherwise it is classified as either the division cell (more than 10000 pixels) or 
mature (between the two values). 

Experimentally, by visual analysis of multiple cell images, it was found that if the ratio 
is less than 5%, the cell is dead, if it is greater than 15%, the cell is old and between 5% and 
15% , may be young or mature, depending on the cell's area. 

The following graphs present the laboratory analyzes performed during the 
experiment: optical density (Fig 4.67) in the two media, count of cell colonies in the two 
media (Fig. 4.68), glucose concentration in the two media and nitrogen concentration. One 
can notice the entry into the stationary state of cells in the YEG environment on the third 
day, respectively, of the G environment on days 3-4, slower due to adaptation to the 
unfavorable environment. 

It can be seen in Fig. 4.69 that on day 4 the glucose concentration increases in the 
YEG medium because after reaching the maximum biomass growth point on day 3, a 
biomass concentration decreasing phase (cells die and decompose) releases back some of 
the nutrients . 

    

        Fig. 4.67-The evolution of optical      Fig. 4.68 - Evolution in time of counting 
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       density/ time        cell colonies 

    

Fig. 4.69 - Conc. glucose [g / l]-YEG medium     Fig. 4.70-Conc. glucose [g / l]-G medium 

 

Fig. 4.71 - Nitrogen concentration [mg/l] - YEG medium 

It can be seen in Fig. 4.69 that on day 4 the glucose concentration increases in the 
YEG medium because after reaching the maximum biomass growth point on day 3, a 
biomass concentration decreasing phase (cells die and decompose) releases back some of 
the nutrients . Fig. 4.70 shows the evolution of glucose concentration in G medium (low in 
nutrients). There is a decrease in day 3 concentration due to the consumption of glucose by 
the growing population, and on day 4 the maximum growth point will be reached. Fig. 4.71 
shows the evolution of nitrogen concentration in the favorable medium (YEG). It is noted that 
the cells in this medium consumed more nitrogen and less glucose, unlike the G-cells that 
consumed the highest nutrient, glucose. As a result, on the day of reaching the maximum 
growth point (Day 3), it can be seen that the amount of nitrogen concentration drops to the 
lowest point, and then it increases due to the decomposition of the cells. 

 

4.3.3 Results obtained with the image processing algorithm 

After running the algorithm on an image, the following parameters are displayed for 
each individual cell: cell area, number of dark areas, ratio of area of dark areas to cell area. 
The following is an example of detection for each cell type (Figures 4.72-4.76). 

 

Fig. 4.72 - Recognizing a young cell (patterns = 6, area = 8490, ratio= 5.23) 

 

Fig 4.73 - Recognizing a mature cell (patterns =10, area = 17181, ratio=6,52) 
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Fig. 4.74 - Recognizing a cell in division stage (patterns = 3, area = 21941, ratio = 5,91) 

 

Fig. 4.75 - Recognizing an aging cell (patterns = 57, area = 9135, ratio = 27,29) 

 

Fig. 4.76 - Recognizing a dead cell (patterns = 2, area = 12352, ratio = 1,82) 

The first column contains the images of the color cells as they are present in the 
original image and the internal nucleotides detected, the second shows the images resulting 
from the segmentation, and the third presents the images resulting after the clustering 
method and the internal cellular detection of the algorithm image processing. Studying the 
resulting images, it can be seen that they favor recognition by the human operator, but at the 
same time the characteristics extracted by the algorithm are sufficiently relevant in an 
automated classification procedure. An example of running the algorithm on an image taken 
by the color camera on the third day of the experiment, as well as the images resulting from 
the processing, are presented below. 

      

   Fig. 4.77 - Original captured image by                Fig. 4.78 The best quality image resulting  
          the microscope camera     from image processing 

 

In Fig. 4.77 is the captured image and in Fig. 4.78 is the image with the best qualities 

resulting from the processing (Step 1), segmentation and labeling of the identified cells (Step 

2 - Step 4). Figures 4.79 - 4.83 present the five cells identified in series of three images. In 

the first image on the left one can see the internal nucleotide recognition of the cell, the 

middle image shows the cut cell in the image on which it is calculated and the area and in 

the image on the right is the cell resulting from the application of the K-means Clustering 

method. Several cell contour detection techniques have been tested: 

• canny method; 
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• hough method; 

• entropy method; 

• watershed method; 

• threshold segmentation method (matlab); 

• K-means clustering. 

 Following tests performed on numerous cell images, it was experimentally found that 
the K-mean method provides the best results in detecting individual cell contours. It can be 
seen from Fig. 4.79 - 4.83 that a dead cell and four mature cells were determined according 
to the parameters that are displayed for each cell. 

 

Fig. 4.79 - Cell 1 (mature, patterns =10, area = 17181, ratio = 6,3%) 

 

Fig. 4.80 - Cell 2 (dead, patterns = 2, area = 12352, ratio = 1,8%) 

 

Fig. 4.81 - Cell 3 (mature, patterns = 5, area =12897, ratio = 7,3%) 

 

Fig. 4.82 - Cell 4 (mature, patterns = 9, area =14551, ratio = 8,6%) 

 

Fig. 4.83 - Cell 5 (mature, patterns =6, area =10382, ratio =10,1%) 
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4.3.4 Study of algorithm errors 

During the testing of the algorithm a number of identification and classification errors 
were observed. In Fig. 4.84 it can be seen as an error of identification that the chick of cell 
no. 2 is not identified because it is of a very small size and is classified by the algorithm as 
impure and therefore excluded. In Fig. 4.85 one can distinguish the same error in the 
previous case when a cell in the division is not recognized due to the very small size of the 
chicken. Another type of error present can be seen in the picture in Fig. 4.86 where cell no. 2 
is not recognized as the cell in the division, but two different cells are recognized. This error 
is due to focusing the microscope and the camera by producing a white blur between the two 
cells. This blur is cataloged by the algorithm as background and therefore distinguishes two 
independent cells. 

      

     Fig. 4.84  Cell identification error               Fig. 4.85 - Cell identification error 

      

     Fig. 4.86 - Cell identification error                Fig. 4.87 – Image without identification errors 

In Fig. 4.87 no yeast cell identification errors have occurred, so it can be said that for 
this picture the error is 0%. The following figure (Figure 4.88) may encounter a classification 
error. Cell number 7 is a dead cell with no intracellular content but, due to a partial 
recognition of it, is classified as incomplete recognition (without the left membrane). Another 
type of classification error is to classify a cell as an old cell when, in fact, it is mature. This 
type of error occurs in blurred / blurred images where the cellular interior is not well-
highlighted. The algorithm was run on a set of ten images, containing a different number of 
yeast cells in different stages of evolution. Table 4.1 and Fig. 4.89 shows the synthetic 
results. 

 

Fig. 4.88 - – Image without identification errors, but with clasification errors 
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In Fig. 4.87 - cell number 1, as well as Fig. 4.88 - cell number 4, are at the edge of the 
observation field, so they are partially viewed. In these cases, the algorithms compare the 
area of these partial cells with the minimum area (the threshold for recognition between an 
impurity and a cell), and if the area is greater than this threshold, the object is considered the 
cell and used in the next steps. The cell area is also taken into account when determining 
the biomass concentration. 

Table 4.1 The average error introduced by the cell recognition algorithm 

Imag.No. 1 2 3 4 5 6 7 8 9 10 

Erorr 30% 30% 20% 0% 15% 7% 20% 0% 25% 15% 
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Final conclusions 
 

Bioprocesses are processes that involve the development of microorganisms cultures 
for the purpose of naturally producing products of interest to human communities, such as 
medicines, pigments, biofuels, enzymes etc. Waste water treatment processes, where 
biotechnologies are the foundation of these processes, must also be mentioned. If at first 
biotechnology developed as a stand-alone science with more or less significant results, after 
1980 biotechnology specialists were mainly focused on using automation techniques to 
streamline these processes. In fact, we can speak of an interdisciplinary field where 
contribute biotechnology and automation, to which were added computer science, 
mathematics and other sciences (physics, chemistry etc.). We can assert that the field of 
biotechnological processes has become a challenge for the specialists in control who have 
found a "technological niche" for developing and applying more and more advanced 
modeling techniques and control algorithms for making bioprocessing more efficient. 

A delicate problem in controlling bioprocesses is that of measuring the main variables 
of interest, designing control loops or diagnosing bioprocesses. There are variables (eg 
concentration of biomass, substrate, metabolic products etc.) that cannot be measured on-
line simply because there are no sufficiently precise, reliable sensors and at an acceptable 
cost price to allow their direct use in automation equipment. Using state estimators can be a 
solution to overcome this difficulty, provided that a mathematical model of bioprocessing is 
available. 

In essence, this PhD thesis proposes a new method for measuring the magnitude of 
interest in bioprocesses in order to implement control algorithms or to diagnose them. The 
method is based on image processing techniques, for which a technical solution for the 
measurement of some bioprocess sizes, proposed in a case study, is proposed to increase 
yeast of the S. cerevisiae species. Thus, using the image processing technique, a method 
for measuring the biomass concentration was made. The process consists in automatically 
counting cells in a picture obtained using a classic microscope and a 1.3 mpx color camera. 

Also, a biomass concentration measurement algorithm has been developed that 
analyzes color or black and white images, evens photometric parameters in the image, 
identifies and separates background cells and impurities, then counts, measures cells and 
calculates biomass concentration. Validation of the method was performed by comparison 
with measurements performed using a classical method, determination of dry matter in 
culture. 

A communication interface has been designed and built between the automation 
equipment of a classic bioreactor and a purchase card connected to a PC. Through this 
interface, which includes both hardware and software, the automation of a classic bioreactor 
has been carried out and experimentation has been validated on the operation of the 
"transducer" based on image processing techniques. The two software-related algorithms 
mentioned above are for controlling the growth process of S. cerevisiae yeasts and for 
image analysis. For this purpose, the bioreactor has been provided with a sensor that allows 
real-time sampling, thus closing a biomass concentration control loop. The designed sensor 
consists of a bypass, a classic microscope equipped with a 1.3 mpx color camera and a PC 
computer, equipped with the appropriate software, in this case the Matlab environment. The 
circulation of the suspension in the flow chamber was accomplished by means of peristaltic 
pumps, used as execution elements. As mentioned above, the automated system developed 
in the doctoral thesis was designed and validated in the case of the growth of yeast cultures 
of Saccharomyces cerevisiae, but it can be easily adapted and used for other cell cultures 
similar to yeast cells. 

Because this system does not require surveillance or control from the human factor, it 
can be used for long-term experiments. 
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On the diagnostic side, a series of image processing algorithms for yeast cell 
recognition have been developed and can be used by an operator to analyze cell cultures. 
This is of real use to the biotech operator who can be warned about the viability of the micro-
organism culture (if the culture has been contaminated, if the biomass develops in good 
conditions, the average age of the culture can be appreciated etc.) in order to decide to 
continue or stop the process with the idea of rescuing material and energy resources that 
would be consumed unnecessarily if the process would evolve towards a state of failure. The 
first algorithm is able to recognize whether a yeast cell is alive or dead using a regular light 
field microscope and a black and white camera with a precision of over 80%. 

The cell classification method was validated using a phase contrast microscope. The 
second algorithm allows the recognition of individual intracellular characteristics based on 
which cells are classified into five categories: young, mature, divisive, old and dead. The 
algorithm uses color images and the k-Means Clustering method to determine the 
intracellular constitution of each detected cell. Validation of the method was carried out using 
an experiment on a yeast culture lasting 6 days. In the experiment, the following 
measurements were measured: biomass concentration by classical method (cell count in 
Petri dishes - SPC), optical density, nitrogen and glucose concentration measurement. In 
order to compare the results obtained with the mentioned algorithms, daily laboratory 
analyzes were performed in parallel with the capture of images. 

Original contributions of the PhD thesis 

In summary, the following contributions should be mentioned in the doctoral thesis: 

1. Development and implementation of an image-based image transducer for 

measuring the bioprocessing interest rates with the two components: hardware and 

software (in the case of this doctoral thesis - biomass concentration). 

2. Experimental validation of the transducer operation for the measurement of biomass 

concentration by image processing techniques in the case of a yeast growth process 

of Saccharomyces cerevisiae. 

3. Making a flow and bypass cell, a component of the aforementioned transducer, to 

take culture samples for measurement; it should be noted that this flow cell is one of 

the most important contributions of the thesis, being the essential element of the 

transducer, determining the accuracy of measurement of the biomass concentration. 

In the thesis, the flow cell has been improved by successive versions, to achieve the 

performance required for automatic operation, as well as the optical characteristics 

that influence the accuracy of cell identification and classification. 

4. Determination of the dynamic characteristics of the transducer for the measurement 

of biomass concentration by image processing techniques in order to establish the 

minimum sampling period. 

5. Creating a cell detection algorithm and calculating the real-time biomass 

concentration by image analysis techniques. 

6. Making an algorithm that evens photometric parameters from images and which is 

based on 2D discrete cosine transformation. Since the luminance and chrominance 

of images depend on several factors such as: the density of the suspension, the 

optical characteristics of the lens, the focus of the camera, the brightness of the lamp 

and the position of the lens on the exposure area, this algorithm automatically adjusts 

the luminance and chrominance of the color images differences are reduced and 

image properties are uniform. 

7. Making a method for automatically determining the segmentation threshold of an 

image that obtains the smallest errors on a large number of images. 

8. Identification of the yeast growth process of Saccharomyces cerevisiae, in two 

variants, the second variant (based on Strejc models) having a technological support. 

9. Design of a linear controller for the biomass concentration control and thus validated 

the image-based transducer developed in the doctoral thesis. 
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10. Development and implementation of a control system including the biomass 

concentration transducer using image processing techniques. 

11. Making an interface between the bioreactor equipment and a leading PC computer 

where both image processing algorithms and the bioreactor control algorithm are 

implemented. 

12. Experimental validation of the controlled system, including the biomass concentration 

transducer using image processing techniques, on a yeast growth bioprocess of 

Saccharomyces cerevisiae. 

13. Study of physiological elements characteristic of the yeast cells (from a 

biotechnological perspective), in order to extract their traits, which were later used in 

the classification of cells. 

14. Making an algorithm for classifying the cell state from a two-class culture (living or 

dead) by black and white image analysis and experimental validation of the algorithm 

using phase contrast microscopy. 

15. Making a cell classification algorithm in 5 categories (young, mature, in division, old 

and dead) according to certain parameters determined by intracellular constitution 

analysis, by color image analysis techniques, in order to diagnose the bioprocess. 

Future research directions 

Starting from the results obtained within the PhD thesis, the researches carried out can 
be continued in the following directions: 

 Expanding the method of determining the biomass concentration and other cell 

species similar to those of the Saccharomyces cerevisiae species (whose form is 

quasi-spherical) by modifying parameters such as cell size, detection thresholds etc. 

 In the case of the cell classification algorithm, it can also be extended to other 

species that have similar intracellular characteristics by observing internal cell 

transformations during their development. 

 The interface proposed in this paper can easily be adapted for a field bioreactor and 

control equipment with different characteristics (volume, thermal inertia, different 

flows of peristaltic pumps etc.). 

 Investigating the use of a color camera with a sensor resolution of more than 1.3 

mpx, resulting in greater detection accuracy and lower errors. 

Dissemination of results 

The results of the research in the doctoral studies were presented in the following 
published articles:  

1. Laurențiu Marius Baicu, George Ifrim, Laurențiu Frangu, Sergiu Caraman, ”Viability 
diagnosis in biotechnological cultures through image processing”, 19th International 
Conference on System Theory Control and Computing (ICSTCC), oct. 2015, Cheile 
Gradistei, Romania, pp 770-775 - ISI Proceedings - IEEE; 

2. Ifrim, George, Titică, Mariana, Baicu Laurențiu Marius, Caraman, Sergiu, “Dynamic 
Modeling of the pH in Lactic Acid Fermentation Processes”, 19th International 
Conference on System Theory Control and Computing (ICSTCC), oct. 2015, Cheile 
Grădiștei, Romania, pp. 225-230 - ISI Proceedings - IEEE; 

3. Baicu Laurențiu Marius, Caraman Sergiu, “Estimating the viability of algae cells 
through image processing”, Scientific Conference of Doctoral Schools from “Dunărea 
de Jos” University of Galați, Third Edition - Galaţi, 4-5 June 2015, poster; 

4. Baicu Laurențiu Marius, Caraman Sergiu, “Evolution analysis of yeast cells using 
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