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Introduction 

 
 In the last century, the growing population and the evolving of the modern society on 

different segments, represents the principal cause of contaminating the environment and the 
water resources. Taking into consideration that the clean water supplies are reduced, it is 
important to take measures to protect and prevent the pollution from the water sources 
which affects negatively the environment and to assure living conditions and development 
for all living species. Nowadays, there is an increased awareness of the importance of 
preventing pollution and minimizing waste in activities like industrial, urban and agriculture, 
but also in the recycling process. Biotechnology has a major importance in dealing with 
these contemporary challenges, at this time being the best technology available to assure 
environment protection and durability. The technologies from the biotechnology are multiple, 
but one of the most common are the wastewater treatment processes from the industrial 
processes, people’s households etc. 

 The Wastewater treatment plants are designed to reduce the amount of organic 
matter and suspended solids from water by using appropriate treatments in order to purify 
water before it is discharged into any emissary (sea, rivers, lakes etc.). These processes are 
inherently dynamic due to high variations of the wastewater admission flow, concentration 
and its composition. Because of this, mathematical models and computer simulations are 
essentials to model, predict and control these complex processes. The operation of 
wastewater treatment processes is very complex. In some plants low performances, high 
costs and environment degradation were caused by operational problems. Improving 
performance of the wastewater treatment plants depends mainly on the detection, isolation 
and identification defects (FDI - Fault Detection and Isolation) in order to increase safety and 
reliability of the equipment. Therefore, several approaches referring to diagnosis in the 
wastewater treatment processes were proposed: approaches based on heuristic knowledge 
like artificial intelligence (neural networks), statistical analysis and approaches based on 
mathematical models. 

 In the research carried out within the present PhD thesis, the following research 
directions were considered: the first objective consists in modeling biotechnological 
processes, in particular, the wastewater treatment plants, using artificial intelligence 
techniques, like neural networks. It is intended to implement a neural model that predicts the 
outputs of a wastewater treatment plant in which the organic substrate is biologically 
removed. The advantage of the neural network, used as a model of the system, is that it 
learns directly from the experimental data without using an analytical model. In general, for 
network training it is necessary to use a very large and representative dataset for the 
operating domains in which the model will be used. The neural network which predicts the 
outputs can be used for purposes like regulation or diagnosis of the biotechnological system. 

The second direction of research focuses on the diagnosis of faults in biotechnological 
processes. Since the diagnosis involves two steps, like detection and isolation of faults, the 
propose is to implement techniques for detecting and recognizing faults using neural 
networks in an active sludge treatment process. In case of detection, two situations will be 
analyzed: 1. the process outputs are considered measurable and 2. some of the process 
outputs are not directly measurable via dedicated sensors. In case if some process outputs 
are not measurable, it can be used state and parameter estimators such as observers, but 
the main disadvantage of this method remains the problem of determining an accurate 
mathematical model of the process as good as possible. In order to recognize faults, it will 
be designed a neural network which works as a classifier. The performance of the detection 
algorithm and of the recognition method will be tested in the case of net faults and partial 
faults of specific actuators or transducers used in the wastewater treatment processes. 

The structure of the PhD thesis includes: an introduction, four chapters and 
conclusions. In the introduction the main research directions proposed and the motivation 
that underpinned the approach of the study topic in this PhD thesis are presented. 



Chapter 1 presents an overview which consists in the state of the art regarding 
detection and diagnosis of faults in wastewater treatment processes. Arguments are 
presented on the importance of fault diagnosis, the main types of faults, various fault 
detection methods and a number of isolation techniques are analyzed. Also, here are 
mentioned and analyzed some recent results from the field of fault detection and isolation in 
biotechnological processes, with applications especially on the wastewater treatment plants. 

In Chapter 2, some general aspects of the neural networks (architectures, activation 
functions, learning rules etc.) are mentioned, highlighting their domain of applicability. The 
main functionalities of the biotechnological systems, in particular, of the wastewater 
treatment plants with activated sludge, are also presented. The wastewater treatment plant 
from “Dunărea de Jos” University of Galati laboratory, with the monitoring and control 
equipment, is presented. A real fault is described, appeared in an experiment conducted at 
the mentioned treatment plant, in which the air flow transducer malfunctioned, along with the 
observed symptoms. In the last part, the emphasis is on contributions that consist in 
modeling a wastewater treatment plant (where biological substrate is biologically removed) 
using neural networks. The simulation and the validation results of the neural model shows 
that the biotechnological process can be successfully modeled through a feedforward neural 
network. The modeling error obtained is more than acceptable for the normal operating state 
of the process. 

Chapter 3 presents the contributions referring to the detection of faults in the 
wastewater treatment plants. Two model-based fault detection methods are proposed for a 
wastewater treatment process with activated sludge. In the first situation, when the process 
outputs are considered measurable, detection is performed using the neuronal model of the 
analyzed process, obtained in Chapter 2. In the second situation, when some process 
outputs are not measurable, a detection method based on the analytical model of the 
process is proposed using an extended Kalman filter. The conditions that are considered in 
designing the both methods are: the response speed of the alarm signal in the presence of 
the fault, the sensitivity to the fault (detection of partial faults that have reduced effects on 
the process), the robustness (operations in the presence of noise, external disturbances and 
modeling errors) and the low number of false alarms. In both situations, the performance of 
the methods is tested by simulating the net and partial faults of the actuators and 
transducers which can occur in the wastewater treatment plants. An important contribution in 
this chapter is the investigation of two methods for choosing the main parameters of the fault 
detections method (sensitivity threshold, ε, and residue calculation horizon, N). The first 
method consists of a theoretical analysis in which three hypotheses are considered, as 
follows: lp. 1 - there are no modeling errors (er(k) = 0, meaning that the model reproduces 
very well the evolution of the supervised process), if there is a fault, it is assumed that the 
deviation produced by it has reached steady state in a very short time (several sampling 
periods) the decision must be taken quickly, only on the value of the current sample, so N=1, 
which is equivalent of saying that the residual was determined for the current sample only; 
lp. 2 - there are no modeling errors (meaning that the model faithfully reproduces the 
evolution of the supervised process), the deviation produced by the faults evolves slowly, 
with known growth time and the decision can be made on the basis of several successive 
samples, the residual is calculated on the time horizon N>1; lp. 3 - there is a modeling error 
with a known density of probability, the deviation caused by the fault evolves slowly, with 
known growth time, the modeling error varies more slowly than the deviation produced by 
the fault, and the decision can be made on several successive samples (N>1). The second 
method consists of the heuristic determination of the parameters ε and N. It has been 
concluded that the theoretical analysis of choosing the two parameters of the detection 
method is confirmed by the results obtained by heuristic techniques in section 3.2. 

In Chapter 4 a neural classification network is designed to recognize net faults and 
partial faults that can occur in a wastewater treatment process. The experimental data set is 
large enough and contains representative data for all the faults analyzed. Following the 
training, validation and testing of the neural network, it is concluded that it is obtained good 
recognition rates for all type of defects analyzed. 



In the final chapter, called final conclusions, the original contributions of the thesis are 
mentioned and the following research directions are established. 

 

 



 

1 
 

Chapter 1  

State of art regarding detection and diagnosis of faults in 

biotechnological processes 

1.1 Generalities regarding biotechnological processes 

Biotechnology is the science that studies “living” processes which contain 
microorganisms, cells or cellular components in order to develop new technologies and 
products to significantly improve people's lives and make a significant contribution in 
protecting the environment. 

Related to environmental protection, the wastewater treatment processes, which are 
essencially biotechnological processes, have innovative technologies that reduce energy 
consumption and wastewater in order to protect and regenerate the environment, and so the 
industrial processes become more "clean" and more efficient. 

Regarding the wastewater treatment processes, they have the role of eliminating or 
reducing the amount of chemical or organic waste from the wastewaters. Wastewater 
treatment can be achieved through several types of treatment: mechanical, biological and 
chemical. Numerous researchers are focusing on the development of new wastewater 
treatment technologies, as well as increasing the efficiency, safety and maintenance of 
existing technologies through detection and diagnosis techniques, especially applied in the 
biological stage. Thus, nowadays, the detection and diagnosis of faults in wastewater 
treatment plants has become a challenge due to the complexity of these systems. Cells, 
contained by populations of living microorganisms, develop unpredictably, may undergo 
mutations that may affect their development, and in particular growth, transport and 
propagation dynamics that are difficult to understand, non-linear, and time-varying. Last but 
not least, these processes are affected by measurement and process noise, as well as 
parametric and model uncertainties that create major difficulties in mathematical modeling 
and control, including diagnostic issues. The lack of dedicated sensors that can provide 
accurate real-time information, the low reliability of existing ones and, in particular, prohibitive 
costs for their use in industrial applications contribute to the above-mentioned difficulties in 
systemic treatment of such processes. Generally, measurements in bioprocesses are done 
through laboratory analyzes performed off-line, which creates a major handicap in 
implementing the automatic control laws. Thus, problems with the on-line measurement of 
the concentrations of interest variables in bioprocesses have been attempted to be overcome 
by designing and using state and parameter observers, which are a viable alternative for 
measuring the main variables in bioprocesses. The main disadvantage of this method is 
obtaining a mathematical model of the process. 

The literature from this domain recommends a number of models of wastewater 
treatment processes. The best known are the mathematical models developed by a team led 
by Professor Henze within the IWA (International Water Association). This include the ASM1 
("Activated Sludge Model 1") [1] designed to remove residues containing organic carbon and 
nitrogen. A second mathematical model developed within IWA is ASM2, which additionally 
performs phosphor removal [2]. In ASM2, the unresolved part was denitrification of PAO 
(phosphorus accumulation organisms). This has led to the need to extend the ASM2 to the 
ASM2d version. The model is an extension of the two ASM2 and ASM1 models, and uses 
the concepts included in these mathematical models. ASM2d includes two additional 
processes that take into account that phosphorus accumulation organisms can use biological 
products stored inside cells for denitrification. As ASM2 implies that PAO will only increase in 
aerobic conditions, ASM2d also includes PAO denitrification [3]. ASM2d is an improved 
model of wastewater treatment processes, particularly with regard to the dynamics of nitrate 
and phosphate concentrations. The ASM3 model can estimate the oxygen consumption, 
sludge production, nitrification and denitrification of active sludge systems. 



 

2 
 

Further, this chapter presents a review which consists in a state of art regarding 
detection and diagnosis of faults in wastewater treatment processes. Arguments on the 
importance of fault diagnosis, the main types of faults, various fault detection methods and a 
number of isolation techniques are presented. In the last part are mentioned some recent 
results from the field of fault detection and isolation in the biotechnological processes, with 
particular application on the wastewater treatment plants. The last section is reserved for the 
conclusions. 

 

1.2 The importance of fault detection and diagnosis in 
biotechnological processes 

Fault diagnosis is an important issue in the control of biotechnological processes and 
continues to be an active field of research in modern automation. 

In the case of bioprocesses, fault diagnostics techniques can be used to improve the 
efficiency, maintenance, and reliability of these processes. Early detection of a fault can help 
avoid collapse of a whole system or eventual catastrophe by corrective action, depending on 
the severity of the source that caused the fault. Steps to be followed in the diagnosis of 
defects are: 1. determining the presence of a fault and 2. determining the type and 
magnitude of the fault [4]. These steps are applied depending on the plant, equipment and 
technologies used. 

According to the IFAC SAFE - PROCESS technical committee [5] and [6], “a fault is an 
unpermitted deviation of at least one characteristic property or system parameter from 
normal, acceptable, normal system conditions”. Faults can occur in some subsystems, for 
example sensors and actuators. 

In general, diagnostic methods use the concept of redundancy, which can be of two 
types [7] (Figure 1.1): hardware redundancy and software redundancy. 

 

Fig. 1.1 - Hardware and Software Redundancy (Analytical) Applied for Fault Detection and 
Isolation (FDI) [7] 

Hardware redundancy refers to the ability to compare duplicate signals generated by 
various hardware sources, such as the result of measurements of the same signal obtained 
from two or more sensors. The techniques used in this approach are: signal processing 
methods (e.g. Wavelet transform), boundary testing (measurements compared to various 
thresholds indicating the presence of an anomaly), use of special sensing sensors (designed 
to measure only certain parameters), parallel sensors for measuring the same parameter or 
use of expert systems (based on rules such as "IF THAT ..." for an abnormality). 

Software redundancy (analytical) uses a mathematical model of the system along with 
other estimation techniques [8], [9]. In general, this approach does not require additional 
hardware resources and is usually more cost effective compared to hardware redundancy. 
On the other hand, analytical redundancy is more difficult to implement because it has to 
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provide a degree of robustness in the presence of noise, disturbances or approximation 
errors introduced by the mathematical model. If these conditions are not taken into account, 
false alarms may occur in the presence of input variations or noise. By comparing the 
estimated values of the analytical model with the measurements obtained from the sensors, 
it can be detected and isolated faults that occur in the process. The goal is to observe the 
difference between the model and the faulty real system. The difference between the actual 
measured output of the process and the estimated output of the analytical model is called 
residual. The value of the residue is compared to a threshold that can be fixed or variable 
(e.g., adaptive threshold), which determines whether or not a fault occurs in the process. 

In Fig. 1.2 it can be observed that analytical redundancy is also divided into diagnosis 
methods using quantitative and qualitative models [4], [10] and [11]. All these diagnosis 
methods use parameter estimators, status observers, artificial intelligence techniques (neural 
networks, evolutionary algorithms, etc.), hybrid methods (neuro-fuzzy models), parity 
equations, or statistical classifiers to detect and isolate discrepancies between the observed 
behavior of the process and the output predicted by the model. In addition, diagnosis 
methods based on qualitative models (fuzzy logic, graphs, trees, search methods, expert 
systems) use quality relationships between inputs and outputs of the process. These 
relationships provide declarative information about the state of the process parameters 
(generally the variation of the parameter values). The motivation for the use of these 
qualitative models is reinforced by the fact that not all processes and faults can be described 
by analytical models, and knowledge can easily be incorporated into diagnosis schemes [13], 
[14] and [15]. 

 

Fig. 1.2 – Model based diagnosis methods [12] 
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Chapter 2 

Modeling biotechnological processes using neural 

networks 

Biotechnological processes are complex systems, strongly non-linear, and influenced 
by parametric and model uncertainties (hidden dynamics - unmodelled). These processes 
contain living microorganisms that can have mutations affecting in particular the growth, 
transport and propagation dynamics that are difficult to understand, non-linear and time-
varying. There are few sensors that can provide accurate, real-time information about the 
development of a cell culture. In general, concentrations of biological variables can only be 
determined by laboratory analyzes performed off-line, which creates a major handicap in the 
mathematical modeling of these processes, the implementation of control laws or diagnostic 
techniques. In this way, it is important to have a precise model as possible to best 
approximate the behavior of the biotechnological process and to generate the residual sets 
subsequently to be evaluated for fault diagnosis. In the category of bioprocesses are 
included the wastewater treatment processes, which will be the subject of developing some 
diagnostic methods in this research work.  

Neural Networks (RNA) are artificial intelligence techniques that provide efficient 
predictive models for complex processes, and can also be applied in situations where 
insufficient process knowledge is available. The advantages of neural networks are that: 

- it’s not necessary to describe mathematically the phenomena involved in the process; 

- is needed less time to build models versus traditional mathematical models; 

- it have a very good prediction ability with a limited number of experiments [107] – 
[110].  

It has been demonstrated by various applications that neural networks approximate 
very well if the training data set contains sufficient examples and the number of neurons in 
the hidden layer is sufficient. It should also be mentioned that neural models with 
feedforward architecture are most commonly used in recent biotechnological modeling 
studies [111], [112] and [113]. 

 

2.1 General aspects of neural networks 

Over the years, it has been recorded numerous advances in the direction of developing 
intelligent systems using neural networks. Neural networks have been studied by 
researchers to solve problems in various scientific fields such as pattern recognition, 
prediction, optimization, associative memory, control, and so on. Although several algorithms 
that use neural networks are encountered in the literature, they are not flexible enough to 
operate outside their applicability domain. 

Artificial neural networks are inspired by the model of biological neurons. The features 
that artificial neural networks are trying to imitate are: 

- parallelism; 

- distributed computation and representation; 

- learning ability; 

- improving performance; 

- the ability to generalize; 

- adaptability; 

- the possibility to process information and make decisions; 
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- fault tolerance. 

An artificial neural network is an information processing structure, formed by a number 
of interconnected nodes (neurons). Each connection is characterized by a numerical weight. 
Through weight it is retained the learned information by the network and by adjusting its 
weight value, the neural network is trained. 

The main features of a neural network are: 

- operation (the method of calculating the output depends on input); 

- arhitecture (how neurons are interconnected); 

- training (determining the parameters of the neural network). 

 

2.3. Case study: Neural network modeling of a wastewater 
treatment process 
 

The scientific approach of this PhD thesis consists in developing some diagnosis 
methods of the wastewater treatment processes. For this purpose, we started from a 
mathematical model of a pilot treatment plant designed in our university, within the project 
CEEX – MENER, Nr. 717/25.07.2006, Improvement of qualitative indicators for the biological 
treatment of wastewater in the food industry based on advanced management systems –
APEPUR acronym [128], presented in Fig 2.22. The mathematical model is known in the 
literature as the Nejjari model. The pilot plant was designed for an influent flow rate of 1 liter / 
h and was designed so that the results obtained within the project could be extrapolated to a 
larger station. In the aerobic treatment phase of the wastewater, the bioreactor was designed 
to be able to retrieve loads in CBO5 up to 1700 mg/l, to ratios of CCO/CBO5 ≤ 2.2 and 
CBO5:N:P CBO5:N:P ratios of 100:5:1, these parameters being associated with the heavily 
loaded waters of organic substances, mostly from the food industry. 

2.3.2 Fault occured during an experiment conducted on the pilot 
wastewater treatment plant from “Dunărea de Jos” University of 
Galați 

Further, it is presented a real fault occurred in the experiments conducted with the pilot 
plant from "Dunărea de Jos" University of Galați. The experiment was conducted over 
several days; some of the results relevant for this PhD thesis are being shown in Fig. 2.24 – 
2.26. Thus, in Fig. 2.24 shows the evolution of the air flow, in Fig. 2.25 - the dissolved 
oxygen concentration, and in Fig. 2.26 - turbidity, measurement by which the biomass 
concentration is measured. In the above-mentioned figures it can be seen that the 
purification process had a normal evolution up to the 15700 sample, after which the 
measured air flow drops to zero, the dissolved oxygen concentration increases excessively 
and after 750 - 800 samples appears a substantial decrease of biomass concentration. The 
explanation is as follows: at the mentioned time, the air flow transducer has not provided the 
measured value (basically it has failed). The dissolved O2 regulator has commanded 
maximum air valve opening, which resulted in a strong increase in the dissolved oxygen 
concentration, and, later, a decrease in the sludge concentration. Finally, it turned out that at 
the origin of the fault, was a failure of the flowmeter power supply. After its replacement, the 
process returned to a normal evolution. 
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Fig. 2.24 – Evolution of the air flow 

 

 

Fig. 2.25 – Evolution the dissolved oxygen concentration 

 

Fig. 2.26 – Evolution of turbidity 
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2.3.3 The mathematical model of the wastewater treatment process 

In the case study analyzed in this section is considered a wastewater treatment plant 
where it is performed a biological removal of the organic substrate of the type presented in 
the previous section. The process model has four outputs: biomass,      [mg/l], organic 
substrate concentration,      [mg/l], dissolved oxygen concentration,       [mg/l] and 

recirculated biomass concentration,       [mg/l]. The analyzed model is non-linear and has 

the command inputs: aeration speed,   [    ], dilution speed (  = the ratio beetwen the 
input flow of the aerated basin and its volume      ) and the recirculation rate of the   sludge. 

In Fig. 2.27,     is the input influence flow that eneters in the aerated bioreactor, and      is 
the effluent flow. 

 

Fig. 2.27 – Systemic representation of the instalation that reduces the organic matter in 
wastewater treatment processes with active sludge [111] 

 

The following hypotheses are considered for the mathematical model of the analyzed 
process [129]: 

 The system regim, in which the bioreactor works, has                  ; 

 The recirculation flow of the active sludge is considered proportional to the process flow 

 :       ; 

 the flow of the sludge in excess from the bioreactor is considered proportional to the 
inflow ( ):          

 there is no substrate or dissolved oxygen in the recirculated flow of the active sludge; 

 the output flow of the aerated bioreactor is considered equal to the sum between the 
input flow of the bioreactor and the recirculated flow of the active sludge. 

Considering Fig. 2.27 and the 5 hypotheses formulated above, results the following 
differential equations which describe the mathematical model of the process: 

  

  
                                     (2.15) 

  

  
  

    

 
                              (2.16) 

   

  
  

             

 
                           (           )           (2.17) 

   

  
                                                (2.18) 

         
    

       
 

     

          
      (2.19) 

  
   

 
    

   

  
      (2.20) 
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where X(t) – biomass concentration, S(t) – substrate concentration, DO(t) – dissolved oxygen 
concentration, Xr(t) – recirculated biomass concentration,      – the specific biomass growth 

rate,      – the maximum specific speed of biomass growth, D(t) – the dilution speed, W(t) – 
the aeration speed, r – the recirculation speed, Sin – the influent concentration of the 
substrate, DOin – concentration of the influent dissolved oxygen, DOsat – the saturation value 
of the dissolved oxygen, Y – efficiency coefficient, Ks – saturation constant of the substrate, 
KDO – saturation constant of the dissolved oxygen,   – transfer rate of the oxygen,   – 
excess sludge rate, Fin – influent flow, V – bioreactor volume, Ds – the dilution speed of 
sludge, Vs – sludge volume.  

 

Fig. 2.28 – The simulation results of a wastewater treatment process in open loop [111] 

Fig. 2.28, presents the results of simulating the mathematical model described by the 
equations (2.15) – (2.19) in open loop, during the transient response when it is applied a step 
on the D(t) input.  

The results of simulating the mathematical model were obtained by considering the 
following input parameters values::     = 0.11[h-1], Ks = 0.18[g∙L-1], KDO = 0.2 [g∙L-1], Y = 

0.67, DOsat = 8 [mg∙L-1],   = 0.0033 [L-1], r = 1;   = 0.2, V = 35 [L], Vs = 6 [L], D = 0.025 [h-1], 
W = 5 [L∙min-1], Sin = 0.8 [g∙L-1], DOin = 2 [mg∙ L-1] and initial conditions: X(0) = 0.5 [mg∙ L-1], 
S(0) = 0.8 [mg∙ L-1], DO(0) = 2 [mg∙ L-1], Xr(0) = 0 [mg∙ L-1]. 

 

2.3.4 Neural network modeling of a wastewater treatment process 

Neural networks are a powerful tool for predicting, controlling and modeling processes 
and, in particular, for biological wastewater treatment processes [130, 131]. The main 
objective of this chapter is to develop a neural model that can be used to diagnose a 
biological wastewater treatment process in which organic carbon residue is removed.  

In Fig. 2.33 is presented the structure of the neural network designed with Matlab. It 
can be observed 8 input variables (the inputs  ,  ,  ,     and the outputs delayed with one 

sample step,          ). The dissolved oxygen concentration from the influent is considered 
constant (       ). Also, 4 neurons in the hidden layer are sufficient, taking into account 
the training performance and network generalization ability (tested during the validation 
step). 
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Fig. 2.33 – Structure of artificial neural network for approximating the non-linear 
model of the wastewater treatment process 

 
For training, the learning algorithm Levenberg-Marquardt (trainlm - neural transfer 

function in Matlab) was used, also known as the "damped least-squares method" [135]. This 
method, according to [133], is much more effective for nonlinear systems even if it consumes 
more computer memory. The final step validates the neural network using independent data 
sets obtained by simulating the process model with representative data inputs. 

 

2.3.5 Neural network training results 

For training, two sets of data were prepared. The input data sets is a             
array, which contains the current values of the outputs ( ,          ), of the command 
variables (       ) and of disturbance    . The “target” data set is a             array which 

contains the outputs values, forward with a sampling step, compard with those from   array. 

The Matlab commands used in designing the modeling algorithm using the artificial 
neural networks are: newff, train and sim. 

 

Fig. 2.36 – Biomass concentration,    (red – the output obtained from analytical model 
simulation and blue – the output obtained from neural network approximation) 
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Fig. 2.37 – Organic substrate concentration, S (red – the output obtained by simulating the 
analytical model and blue – the output obtained from the approximation obtained with neural 

network) 

 

Fig. 2.38 – Dissolved oxygen concentration,    (red – the output obtained from analytical 
model simulation and blue – the output obtained from neural network approximation) 
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Fig. 2.39 – Recirculated biomass concentration,    (red – the output obtained from analytical 
model simulation and blue – the output obtained from neural network approximation) 

 

 

Fig. 2.40 – The mean square error obtained by training the neural network 

2.3.6 The neural network validation results 

For the validation step, a distinct data set was used. The validation results are 
presented in Fig. 2.43 – 2.46. They indicate a good generalization ability of the neural 
network because its outputs closely follow the outputs of the original model. 
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 Fig. 2.43 - Validation result for biomass concentration,   (blue – result from analytical model 
simulation, red – result from neural network approximation) [111] 

Modeling errors are not relevant to the process because they are near of 0 value (the 
"bioreactor" washout state), which should not occur during normal operation. The deviation of 
the network in this area is caused by the lack of sufficient training data in that interval. 

 

Fig. 2.44 - Validation result for substrate concentration,   (blue – result from analytical model 
simulation, red – result from neural network approximation) [111] 
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Fig. 2.45 - Validation result for dissolved oxygen concentration,     (blue – result from 
analytical model simulation, red – result from neural network approximation) [111] 

 

 

Fig. 2.46 - Validation result for recirculated biomass concentration,     (blue – result from 
analytical model simulation, red – result from neural network approximation) [111] 
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Chapter 3  

Contributions regarding fault detection in the 

biotechnological processes 

3.1 Common problems in fault detection 

In our days, fault detection in wastewater treatment plants has become a challenge for 
specialists due to the complexity of these processes. In this context, many researchers have 
contributed to the development of various methods of detecting defects, but also to improving 
existing ones [136], [137], [138], [139], [140] și [141]. 

Data-based models such as neural networks or fuzzy techniques provide a powerful 
and fast computational tool for dealing with detection problems. Fault detection signal 
processing techniques can be used to observe changes in signals either directly from 
measurements or from residuals resulting from other fault detection techniques [147]. 

Wastewater treatment processes are very complex systems that can be affected by 
various disturbances and noises during normal operation, being susceptible to the 
appearance of various faults that compromise their normal operation. Faults that may affect 
the operation of a WWTP (Wastewater Treatment Process) may be: mechanical / electrical 
(equipment faults due to mechanical or electrical problems) of physico-chemical nature (pH, 
dissolved oxygen or other unknown chemical), biological (biomass was affected – e.g. 
through contamination) or operational (due to lack of trained personnel). 

3.2 Fault detection method for a wastewater treatment process 

based on a neural model 

In this section, a fault detection method based on the neural model of a wastewater 
treatment process described in Chapter 2 is proposed. In essence, each measurable output 
is monitored by an automaton that has to decide whether a fault has occurred. For this 
purpose, a model of the supervised process is used, in this case a neural model supposed to 
provide the same evolution of the outputs, as well as the outputs from the process, if the 
same values of the inputs are applied (aspects regarding the fact that not all input states are 
measurable are not discussed here). 

3.2.1 Defining the conditions for choosing parameters of the fault 
detection algorithm 

The automaton algorithm's decision parameters are: the decision threshold value and 
the number of samples on which the residual is calculated, respectively ε and N. In the 
following, the probabilities and the delay of the decision are calculated so that based on 
them, to be chosen an effective objective function. The objective function and the parameter 
selection procedure (ε and N) are based on the statistical decision theory. 

So, it is realized a theoretical analysis in which three hypotheses are considered, as 
follows: lp. 1 - there are no modeling errors (er(k) = 0, meaning that the model reproduces 
very well the evolution of the supervised process), if there is a fault, it is assumed that the 
deviation produced by it has reached steady state in a very short time (several sampling 
periods) the decision must be taken quickly, only on the value of the current sample, so N=1, 
which is equivalent of saying that the residual was determined for the current sample only; lp. 
2 - there are no modeling errors (meaning that the model faithfully reproduces the evolution 
of the supervised process), the deviation produced by the faults evolves slowly, with known 
growth time and the decision can be made on the basis of several successive samples, the 
residual is calculated on the time horizon N>1; lp. 3 - there is a modeling error with a known 
density of probability, the deviation caused by the fault evolves slowly, with known growth 
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time, the modeling error varies more slowly than the deviation produced by the fault, and the 
decision can be made on several successive samples (N>1).  

Comment on choosing the residual function used in the decision algorithm 

Reffering to the definition of the residual function, used for fault detection, in this 
section I have studied three versions, which are presented in (3.24), (3.25), (3.26).  
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Fig. 3.12 contains three graphs for these three solutions, calculated on N = 20 
samples, to show the difference between the three versions. This is the reson, for which, if 
the expected deviations and modeling errors are high compared to the noise level, the three 
versions of the residual will produce similar results, so it can be said that they are 
equivalent. If, on the contrary, the expected deviation is low compared to the noise level, the 
most advantageous residual is R1. 

 

Fig. 3.12 – The variation of the three residual, with the A deviation value 

 

Further, taking into account the above analysis, the 3th version of obtaining the 

residual for the biological wastewater treatment process was chosen, where the 

residuals is calculated as average of the deviations squares. 

 

3.2.2 Fault detection scheme using a neural network 

In this chapter it is recommended to apply the method of detecting faults based on the 
residuals determination. To test the fault detection system, various faults are simulated using 
the analytical model of the process. The following are considered possible: 

1. net faults of filed equipments from the process (actuators and transducers); 

2. partial faults of the equipments mentioned at the step 1; 

3. faults which appears during unfavorable conditions of the micro-organism (e.g.: toxic 
shock or contamination), which lead the sludge to an unviable state; 
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The general fault detection scheme is shown in the below figure: 

 

Fig. 3.13 – The general scheme of fault detection method 

 

3.2.3 Validation of the fault detection method based on a neural network 
using numerical simulations 

In this section it is presented a series of numerical simulations to analyze the effect of 

  și ɛ parameters on the performance of the method (undetected faults or false alarms) and 
the detection speed (the alarm duration in the presence of a fault). It should be mentioned 
that the sampling period was chosen as follows:          , the process being very 
slow. 

1. Presence of net faults at the field equipment 

a) Fault of the recirculation pump 

For simulating a net fault of the recirculation pump it is considered that the value of the 
parameter     on the interval    [         ]). In the Fig. 3.15 it can be observed the 

deviations on each output of the process at the time when fault occurs. 

 

Fig. 3.15 – The output deviations           due to failure of the recirculation pump (   ) 
on the interval [         ] samples 

Next, the residual for each process output are obtained for the following values of N 
[samples]:                    . Fig. 3.17 shows the value of the residual when 
N = 20. 
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Fig. 3.17 – The residual,  , obtained in the case of recirculation pump failure when      

 

b) Net fault of the biomass concentration transducer 

A net fault of the biomass transducer can be simulated by the fact that the measured 
biomass of the process     (the treatment plant is in the “washout” state. In Fig. 3.20 are 
presented the deviations obtained by simulating this type of fault, which occured in the 
process for a certain period of time, namely, between 4300 and 5400 samples. 

 

Fig. 3.20 - The output deviations           due to failure of the biomass transducer (   ) 
on the interval [         ] samples 
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Fig. 3.22 - The residual,  , obtained in the case of biomass transducer failure when      

The residual is also performed for other values of N [samples]:             
  . 

 
2. The presence of partial faults (25%) of field equipment 

a) Partial fault of the supplying pump failure with influent (25% of the total 
capacity) 

Further, it is analyzed a partial fault of the supplying pump when it operates at 25% of 
the total capacity on the interval    [         ]). In Fig. 3.25 are obtained the deviations 

produce by the operation of the 25% capacity of this equipment. 

 

 

Fig. 3.25 - The output deviations           due to partial failure of the supplying (operating 

at 25% of the total capacity) on the interval [         ] samples 
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Fig. 3.27 - The residual,  , obtained in the case of partial supplying pump failure (operating 

at 25%of the capacity) when      

Further, it is obtained the residual for other values of N [samples]:           
    . 

 
3. The presence of a fault due to a toxic shock suffered by the culture of the micro-

organisms 

The fault due to a toxic shock suffered by the micro-organism culture was simulated by 
halving the biomass growth rate,     , on the interval    [         ]).  

 

Fig. 3.30 - The output deviations           due to the toxicity fault (       on the interval 

[         ] samples) 
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Fig. 3.32 - The residual,  , obtained in the case of toxicity fault when      

In all cases of previously analyzed faults, the value      is chosen for the parameter 
N, which corresponds to the criterias analysis of choosing the parameters of the detection 
method discussed in section 3.2.1. 

The sensibility threshould,  , is set for each output:             ,             , 

        ,    
        . 

 
a). Detection for the net fault of the recirculation pump 

 

Fig. 3.35 – Fault simulated on the interval [         ] samples 

 

Fig. 3.36 - Alarm generation for the   output, in the case of recirculation pump failure (fault 

detection on the [         ] samples) 
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Fig. 3.37 – Alarm generation for the output  , in the case of recirculation pump failure (fault 

detection on the [         ] samples) 

 

Fig. 3.38 – Alarm generation for the output   , in the case of recirculation pump failure (fault 

detection on the[         ] samples) 

 

Fig. 3.39 – Alarm generation for the output   , in the case of of recirculation pump failure 

(fault detection on the[         ] samples) 

 

Fig. 3.40 – Alarm generation of the OR function in the case of of recirculation pump failure 

(fault detection on the[         ] samples, after     , instantaneous detection of the fault) 

 
Detection is performed for all types of faults previously analyzed. In the performed 

simulations it was possible to correctly detect each fault that occurred in the process with a 

delay of no more than    . The best result of the detection algorithm was obtained in the 
case of a failure of the recirculation pump, the detection of the fault being practically 
instantaneous. 
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3.3 Fault detection using extended Kalman filter for a wastewater 

treatment plant 

In this section it is proposed, versus the neural network detection method, when all 
outputs of the process were considered measurable, a method for detecting faults based on 
the analytical mathematical model of the treatment process, plus a Kalman filter to determine 
non-measurable state variables. 

In Fig. 3.59 shows the estimation results of the process states using the extended 
Kalman filter. 

 

Fig. 3.59 – The states estimation using the extended Kalman filter (red – the output of the 
process, black – their estimation) 

3.3.3 The fault detection scheme using the extended Kalman filter 

Fig. 3.60 shows the fault detection scheme used for residuals generation. The input 
     is considered constant.  

 

Fig. 3.60 – The fault detection scheme using the extended Kalman filter 
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3.3.5 Validation of the fault detection method based on the extended 
Kalman filter using numerical simulations 

At this stage, some types of simulated faults are resumed in section 3.2.3 and the 
proposed new detection method is tested in the case when a Kalman filter is used. 

1. Presence of net faults at the field equipment 

a) Net fault of the recirculation pump  

 

 

Fig. 3.62 - The output deviations           due to failure of the recirculation pump (   ) 
on the interval [         ] samples 

 
Fig. 3.63 - The residual,  , obtained in the case of recirculation pump failure when      

The same procedure for calculating the residue is also performed for N = 20, N = 40. 
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b) Net fault of the biomass concentration transducer 

 

 

Fig. 3.66 - The output deviations           due to failure of the biomass transducer (   ) 
on the interval [         ] samples 

 

 

Fig. 3.67 - The residual,  , obtained in the case of biomass transducer failure when      

The residual is also obtained in the case of            
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2. The presence of partial faults (25%) of field equipment 

a) Partial fault of the supplying pump failure with influent (25% of the total capacity) 

It is considered the case when the supplying pump operates at a maximum capacity of 

25% of total capacity over the period    [         ]. In Fig. 3.70 it is obtained the outputs 
deviations          .  

 

Fig. 3.70 - The output deviations           due to partial failure of the supplying (operating 
at 25% of the total capacity) on the interval [         ] samples 

 

 

Fig. 3.71 - The residual,  , obtained in the case of partial supplying pump failure (operating 

at 25% of the total capacity) when      
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Based on the results of the simulations obtained in all the above-mentioned faults 
(detection method using the Kalman filter), it is recommended to choose the following values 
for the parameters of the detection method: 

a)      samples; 

b) The sensibility thresould,  , for each output is given by the following values:        
    ,            ,        ,    

       . 

Further, the detection is performed for all types of analyzed faults. For example, the 
detection result will only be shown for the net fault of the recirculation pump. This is the case 
where the best detection result is obtained, i.e. after approximately     . 

a).Net fault detection of the recirculation pump 

 

Fig. 3.74 - Fault simulated on the interval [         ] samples 

 

Fig. 3.75 - Alarm generation for the   output, in the case of recirculation pump failure (fault 
detection on the intervals [         ] [         ] samples) 

 

Fig. 3.76 - Alarm generation for the   output, in the case of recirculation pump failure (fault 
detection on the intervals [         ] [         ] samples) 

 

Fig. 3.77 - Alarm generation for the   output, in the case of recirculation pump failure (fault 
detection on the intervals [         ] samples) 
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Fig. 3.78 - Alarm generation for the    output, in the case of recirculation pump failure (fault 

detection on the intervals [         ] samples) 

 

Fig. 3.79 – Alarm generation using OR function in the case of recirculation pump failure (fault 
detection on the intervals [         ] samples, after       ) 
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Chapter 4 

Fault isolation using neural networks 

4.1 Common problems in fault isolation 

 

Fault isolation is an important step in designing the Fault Detection and Isolation (FDI) 
systems. Isolation is referring to define the type of fault, to determine the location where the 
fault occured and the moment of its detection in the analyzed process. Thus, the faulty 
components need to be replaced or "isolated" as soon as possible, to avoid propagation of 
the fault through the entire biotechnological process. However, the classical diagnosis 
methods used in wastewater treatment plants have not proved to be very effective to control 
the operation and internal dynamics of processes. Therefore, it is not surprising that there is 
an increase in the number of papers in which various advanced techniques reffering to fault 
isolation are presented. 

These can be divided into three main categories: knowledge-based methods, methods 
based on analytical models and pattern recognition methods. Each of them represents a 
combination of a certain type of a priori knowledge and presents various advantages and 
limitations for a particular application or a particular process [152], [153]. 

Patern recognition methods can be statistical [154], [155] (parametric or nonparametric 
classifiers) or deterministical (neural classification networks). They use information about the 
history of the processes and their main advantage is its real-time performance, the ability of 
knowledge acquisiton, and their applicability in a wide variety of systems. On the other hand, 
they present limitations regarding generalization capacity outside the training domain and 
encounter difficulties in the case of multiple faults detection. 

One of these methodologies, namely, the one that uses artificial neural networks, has 
demonstrated its capabilities in modeling, controlling and diagnosing complex systems by 
processing incomplete or uncertain data [111], [134], [157] - [ 160]. However, less attention 
has been paid to their application in the scope of detection, isolation and surveillance of 
faults in biotechnological systems. 

 

4.2 Artificial neural network method for fault recognition in a 
wastewater treatment process 

This section describes a neural network recognition method to classify faults that may 
occur in a wastewater treatment plant. The wastewater treatment process is detailed in 
section 2.3.3 of Chapter 2. According to [161], wastewater treatment is a complex process in 
which sensors and equipments operate in harsh conditions, and often there are quite a lot of 
delays of the variables response to disturbances. It should be noted that fault isolation was 
made only for faults of field equipment (transducers and actuators, net and partial faults), and 
not for faults related to the nature of the treatment process (very complex biotechnological 
process), as shown in Chapter 3 - faults due to a toxic shock in microorganisms culture.  

 

4.2.1 The fault diagnosis scheme 

As shown in the diagnosis scheme (Figure 4.1) of the faults proposed in this section, 
artificial neural network inputs for pattern recognition of faults are: input variables 
(           ), output variables (         ) and their history over the last 10 samples. At the 
output, the recognition result of each fault is obtained. 
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Fig. 4.1 – Fault diagnosis scheme 

 

4.2.2 Designing the neural network for fault recognition 

To isolate faults, an artificial feedforward neural network is designed as a classifier. 
The designing stages of the artificial neural network for fault recognition are similar with 
those presented in Section 2.3.4, Chapter 2. 

The activation function is sigmoid (logsig) for the hidden layer and the output layer (with 
output values of 0 and 1). For training the network, a backpropagation training algorithm 
based on a conjugate gradient-based minimization method (the Matlab-trainscg function), 
also known as the "Scaled conjugate gradient backpropagation", is used. The performance 
function chosen for the training process is the mean square error (MSE).  

 

Fig. 4.2 - Artificial Neural Network Structure for Recognising faults in the Wastewater 
Treatment Process 

To train the neural network, the input data set is a   array of dimensions 90 x 10889. 
Each column is an example containing 90 values: input variables (           ), output 

variables (         ) and their history over the last 10 samples. For training, a total of 7623 
examples are considered, i.e. 70% of the total number of examples in the input data set. The 
data is obtained by numerical simulation of the analytical model. 

The output data set is a T array of dimensions 7 x 10889 (7 distinct classes). Each 
column is a 7 element column vector that contains values of 0 and 1, as follows: 

                  - The vector belongs to class 1 (normal operation); 

                  - The vector belongs to class 2 (fault of the recirculation pump); 

                   - The vector belongs to class 3 (fault of the supplying pump); 

                  - The vector belongs to class 4 (fault of the excess sludge pump); 

                   - The vector belongs to class 5 (fault of the biomass transducer); 

                  - The vector belongs to class 6 (fault of dissolved oxygen transducer); 

                  - The vector belongs to class 7 (partial fault of the supplying pump). 
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Table 4.1 – Distribution by classes of the number of examples in the training, validation and 
testing data set  

Data sets Class 
1 

Class 
2 

Class 
3 

Class 
4 
 

Class 
5 
 

Class 
6 
 

Class 
7 

Total 

Input set 4289 1091 1100 1100 1100 1100 1109 10889 
(100%) 

Training 3019 753 760 763 771 779 778 7623 
 (70%) 

Validation 637 165 170 163 161 154 183 1633 
(15%) 

Testing 633 173 170 174 168 167 148 1633 
(15%) 

 

 

Fig. 4.4 - Evolution of MSE error during training 

4.2.3 The results of training, testing and validation of the neural network 

After training the neural network, the confusion matrix presented in Fig. 4.5, is obtained:

 

Fig. 4.5 – The confusion matrix for training the neural network 
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The percentage of correct recognition for the 7 classes is 97.2% and the incorrect 
recognition rate is 2.8%. 

Table 4.2 - Recognition percentages for neural network training 

Clas Nr. of examples TP [%] FP [%] TN [%] FN [%] 

1 3019 98.75 1.25 100 0 

2 753 100 0 97.43 2.57 

3 760 100 0 100 0 

4 763 89.91 10.09 99.53 0.47 

5 771 95.53 4.47 99.98 0.02 

6 779 99.87 0.13 99.98 0.02 

7 778 92.94 7.06 99.98 0.02 

 
Table 4.2 shows that were obtained best recognition rates for Class 3 and Class 6 with 

very good recognition rates true (class 3:        ,        ; class 6:          , 

         ) and low values for false recognition rates (class 3:                  ; 
class 6:               ). 

Validation of the neural network - the confusion matrix in Fig. 4.6: 

 

Fig. 4.6 – The confusion matrix for the neural network validation data set 

The correct recognition percentage of the all 7 classes is 97.4% and the incorrect 
recognition percentage is 2.6%. 

Table 4.3 - Recognition percentages for neural network validation 

Class Nr. of examples TP [%] FP [%] TN [%] FN [%] 

1 637 98.91 1.09 100 0 

2 165 98.49 1.51 97.73 2.27 

3 170 100 0 100 0 

4 163 92.81 7.19 99.45 0.55 

5 161 95.26 4.74 100 0 

6 154 98.71 1.29 100 0 

7 183 94.32 5.68 100 0 

 

Table 4.3 shows that the best recognition rates for Class 1 and Class 3 were obtained.  
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Testing the neural network - the confusion matrix in Fig. 4.7: 

 

Fig. 4.7 – The confusion matrix for the neural network test data set 

Table 4.4 shows that the best recognition rates for Class 3 and Class 6 were obtained.   

Table 4.4 - Recognition percentages for neural network testing 

Class Nr. of examples TP [%] FP [%] TN [%] FN [%] 

1 633 99.21 0.79 99.89 0.01 

2 173 100 0 97.72 2.28 

3 170 100 0 100 0 

4 174 88.94 11.06 99.65 0.35 

5 168 96.55 3.45 100 0 

6 167 100 0 100 0 

7 148 92.94 7.06 99.79 0.21 

 

Overall analysis across the entire input data set: 

The confusion matrix from Fig. 4.8 shows that the neural network correctly classifies 
data in 7 classes, in proportion of 97.2%. 

 

Fig. 4.8 – The confusion matrix for the entire input data set 
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 Analysis based on ROC curves ("Receiver Operating Characteristic") 

 

     Fig. 4.9 - The ROC curve for the set of                  Fig. 4.10 - The ROC curve for the set of 

                     7623 training data                                                     1633 validation data 

                                                                                                                                                                   

 

Fig. 4.11 - The ROC curve for the set of 1633 test data 

 

From the ROC curves it appears that the lowest recognition rate is recorded for Class 2 
and Class 4. Otherwise, it is noted that for the other classes very good recognition accuracy 
is obtained, especially for Classes 1, 3 and 6. 
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Conclusions 

 

With the increasing pollution and the development of modern society in recent years, 
the use of biotechnological processes has become vital for sustainability and environmental 
protection. In nowdays, preventing pollution, minimizing waste in industrial, urban and 
agricultural activities, and encouraging recycling, have become a priority. Technologies used 
in the field of biotechnology are many but some of the most common are wastewater 
treatment processes which have a determining role in reducing the amounts of organic and 
solid matter suspended in water by appropriate treatments to purify water before be 
discharged into any emissary (seas, rivers, lakes, etc.). 

Therefore, in addition to the monitoring and control methods, fault diagnosis has 
become increasingly important in order to achieve robust and efficient operation in terms of 
resource use of wastewater treatment plants. Wastewater treatment processes are very 
complex systems that can be affected by various disturbances and noises during normal 
operation, and are susceptible to the appearance of various faults that may compromise 
their correct operation. Faults that can occur in a wastewater treatment plant are: 
mechanical / electrical (faults in equipment due to mechanical or electrical problems), 
chemical (pH, dissolved oxygen or other unknown chemicals), biological (biomass was 
affected – e.g. contaminated) or operational (due to lack of trained personnel). The correct 
operation of sensors and actuators is important for the efficient control of these processes in 
terms of treatment performance and use of energy resources. Robust and powerful 
operation requires automated control that in turn requires reliable and accurate operation of 
sensors that transmit accurate process information. If the automation system uses 
transducers or defective components, it quickly leads to resource loss (raw material and 
energy) or process deviation until it goes out of operation. 

In this PhD thesis, it is proposed, first of all, a modeling method using neural networks 
for a wastewater treatment process with activated sludge. The neural model is useful for 
prediction of process outputs. The advantage of using this method is that, in order to obtain 
a very good prediction capacity, no prior knowledge is needed on the mathematical model of 
the process, but only the data recorded in the process is used. The downside is that the 
amount of data required is very high. They must characterize the process in all the operating 
modes in which the model will be exploited. 

Also, two model-based fault detection methods have been implemented for a 
wastewater treatment process with active sludge. Two situations are analyzed: 1. process 
outputs are considered measurable; and 2. some of the process outputs are unmeasurable. 
The first method uses a neural network as a model for prediction of process outputs under 
normal operating conditions. Detection is based on residuals, calculated as the mean 
squares of the deviations between the outputs of the process and those of the neural 
network. The second detection method uses an extended Kalman filter to estimate non-
measurable outputs. Depending on the residuals values, it is determined whether a fault has 
occurred in the process. For each method, specific recommendations are made on how to 
configure the detection methods parameters in order to reduce the number of false alarms, 
improve detection time, and work even if the process is severely affected by noise. The 
choice of detection parameters (defect sensitivity threshold and residual horizon) was 
achieved by two approaches: a theoretical one, based on the theory of statistical decision, 
three hypotheses being analyzed, and the second, based on heuristic methods. Validation of 
detection methods was performed by numerical simulations, analyzing different types of net 
and partial faults of the actuators or transducers, including faults due to metabolically or 
biochemically unfavorable evolutions for the treatment process. In the simulations made it 
was possible to correctly detect each fault that appeared in the process, obtaining very good 
results compared to other studies. 

On the fault isolation side, an algorithm has been developed to recognize faults that 
can occur in a wastewater treatment process using a neural network as a classifier. The first 
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step was to collect data through numerical simulations to build the data sets needed to train, 
test, and validate the recognition algorithm. A large enough experimental dataset was 
required to contain representative data for all cases of faults analyzed, so that the neural 
network had a very good recognition rate. To isolate the faults, it has been found that it is 
sufficient to design a feedforward artificial neural network. From the obtained results, the 
neural network has a correct classification, 97.2% for all cases considered. 

Original contributions of the PhD thesis  

The following contributions were made in the PhD thesis: 

1. Determining a feedforward neural model that approximates the operation of a 
wastewater treatement process. 

2. Analysis of a biological wastewater treatment plant and possible hardware faults 
characteristic for wastewater treatment processes. 

3. Conducting a theoretical analysis regarding the selection of the parameters of the 
detection algorithms (sensitivity threshold, ε, and the residue calculation horizon, N), 
analysis based on the statistical decision theory. 

4. Implementation of a fault detection method in a wastewater treatment plant using a 
neural network as a model for predicting process outputs under normal (no fault) 
operating conditions. In this case, it is considered that all process outputs are 
measurable. Residues are generated on the basis of the comparison between 
measured outputs and predictor outputs. The procedure for choosing the parameters 
of the detection automaton aims to maximize performance (high sensitivity to fault, low 
detection time, avoiding false alarms). 

5. Validation of the neural network detection method by numerical simulations for 
different types of net and partial faults of the actuators or transducers as well as for a 
fault due to the evolution of the treatment process from the point of view of sludge 
metabolism from the treatment station. 

6. Implementation of a fault detection algorithm with extended Kalman filter applied to a 
wastewater treatment plant. It is assumed that only two output states (biomass and 
dissolved oxygen concentration) are measurable, the other two being estimated using 
the extended Kalman filter. The residual generation principle is used to detect process 
faults. 

7. Heuristic determination of the detection algorithm parameters in order to obtain good 
detection results. 

8. Validation of the detection method using extended Kalman filter, by numerical 
simulations, for various cases of net and partial faults that may occur in the studied 
process. 

9. Establishing an algorithm for the recognition (isolation) of the net and partial faults of 
the actuators and the transducers in a wastewater treatment process using neural 
classification networks. 

10. Parameter configuration, training, testing and validation of the neural network as a 
classifier, so as to obtain very good fault recognition performance for all considered 
faults (net and partial). 

11. Analysing the performances of a fault classifier in the particular case of the wastewater 
treatment plant for the removal of organic substances based on confusion matrices.  

Future research directions 

Taking into account the results obtained within this PhD thesis, the research can be 
extended in the following directions: 

 Improve the prediction error of the neural model which describes the operation of a 
wastewater treatment plant. 
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 Expanding the detection method with extended Kalman filter and the neural network 
detection method for other types of defects. 

 Improving the results obtained with the neural network fault recognition method in a 
wastewater treatment plant by increasing the training data set and thus extending the 
scope of applicability. 

 Resuming the researches from the the PhD thesis for more complex treatment 
processes that remove nitrogen and its compounds, as well as phosphorus in 
wastewater. 

 Application of detection and recognition methods in other biotechnological processes. 

Dissemination of results 

The results of the research from the PhD studies were presented in the following 
published articles: 

1. Mihaela Miron, Laurentiu Frangu, George Ifrim, Sergiu Caraman, “Modeling of a 
Wastewater Treatment Process Using Neural Networks”, 20th International Conference 
on System Theory, Control and Computing - ICSTCC 2016, October 13-15 2016, 
Sinaia, Romania, pp. 210 – 215, ISI Proceedings - IEEE; 

2. Mihaela Miron, Laurenţiu Frangu, Sergiu Caraman, „Actuator fault detection using 
extended Kalman filter for a wastewater treatment process”, 21st International 
Conference on System Theory, Control and Computing, October 19 - 21, 2017, Sinaia, 
Romania, pp. 583-588, ISI Proceedings - IEEE; 

3. Mihaela Miron, Laurentiu Frangu, Sergiu Caraman, "Fault detection method for a 
wastewater treatment process based on a neural model," 2017 5th International 
Symposium on Electrical and Electronics Engineering (ISEEE), October 20 – 22, 2017, 
Galati, Romania, pp. 1-6, Galati Romania, BDI – IEEE.  

4. Laurentiu Baicu, Sergiu Caraman, Laurentiu Frangu, Mihaela Miron, “Measurement of 
the biomass concentration from a bioprocess by image processing techniques”, The 5th 
International Symposium On Electrical And Electronics Engineering (ISEEE), October 
20 – 22, 2017, Galati Romania, BDI – IEEE. 

5. Mihaela Miron, Laurenţiu Frangu, Sergiu Caraman, “Artificial neural network approach 
for fault recognition in a wastewater treatment process”, 22nd International Conference 
on System Theory, Control and Computing, October 10 - 12, 2018, Sinaia, Romania, ISI 
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