
THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recomended for publication by V. Mînzu

65

FINDING EXCEPTION FOR ASSOCIATION RULES VIA SQL QUERIES

 Luminita DUMITRIU

Department of Computer Science and Engineering, "Dunarea de Jos" University,
 str. Domneasca nr.47, Galati 6200 Romania.

Abstract: Finding association rules is mainly based on generating larger and larger
frequent set candidates, starting from frequent attributes in the database. The frequent
sets can be organised as a part of a lattice of concepts according to the Formal Concept
Analysis approach. Since the lattice construction is database contents-dependent, the
pseudo-intents (see Formal Concept Analysis) are avoided. Association rules between
concept intents (closed sets) A=>B are partial implication rules, meaning that there is
some data supporting A and (not B); fully explaining the data requires finding
exceptions for the association rules. The approach applies to Oracle databases, via SQL
queries.

Keywords: data mining, association rules, exceptions, SQL.

1. INTRODUCTION

The data mining research has very much grown in the
last decade. The major applications attempt to define
customer's profile (for retail, transportation or other
services), to detect frauds (for healthcare&insurance
or telecommunications (Cox, et al., 1997)), to
analyse credit risks (in the financial domain), etc.
The discovery of association rules, one of the most
researched techniques for data mining, attempts
finding frequent patterns among large sets of data
attributes. Most of the recent work has been
concentrated on developing efficient mining
algorithms (Agrawal, et al., 1993, Agrawal, et al,
1996, Brin, et al, 1997, Dumitriu, et al, 2000, Lin and
Dunham, 1998, Park, Chan and Yu, 1995, Savasere,
Omiecinski and Navathe, 1995, Toivonen, 1996,
Zaki, et al., 1997). There are also efforts on
expressing a coherent association theory (Zaki, et al.,
1998). A major part of the research was focused on
dealing with transactional databases, but there are
important contributions in the study of relational
database systems (Agrawal and Shim, 1996,
Nestorov and Tsur, 1997, Sarawagi, Thomas and
Agrawal, 1998, Thomas and Sarawagi, 1998).

2. FREQUENT SETS AND ASSOCIATION RULES

The description of the association rules mining was
first given by Agrawal et al. (1993). The set of items
or attributes are designated by the literals I = { I1, I2,
… , In}. A record (or transaction) contains some of
the items of I, for the transactional data base case, or
contains their presence information, for the relational
data base case. We will denote this relation through
the inclusion operator, ⊂ . The input data for the
mining algorithms consists in a set of records. Any
set of items of I is called an itemset. An association
rule is a relation between itemsets, A⇒ B, where A
and B are contained in some transaction, and
A∩ B=∅ . A is the antecedent of the rules, and B is
the consequent.
An itemset is associated with a measure of frequency,
called support, and support (X) denotes the ratio
between the number of records that contain X and the
total number of records in the data set. For a rule, the
support measure refers to the A∪ B set. The strength
of an association A⇒ B is measured by the
confidence of the rule determined as support
(A∪ B)/support (A).

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

66

Mining association rules is finding all the rules that
exceed two user-specified thresholds, one for
support, min_sup, and one for confidence, min_conf.
An itemset that exceeds the support threshold is a
large itemset. Let S be a large itemset, for any A⊂ S
and support (S)/support (A)≥min_conf, A⇒ S-A is an
association rule. Therefore, classically finding
association rules consists in two stages:

- Discovering all large itemsets. This stage is
classically split into two parts: candidate-
generation step, of an incremental manner, and
large item selection, counting the support of the
candidates and pruning the ones that are not
large;
- Determining the rules with enough
confidence.

The main algorithms are sequential or parallel,
running on the entire data set or only on a training
set, use different approaches to reduce the number of
data base scans or the amount of storage memory.

3. FORMAL CONCEPT ANALYSIS

The theory of formal concept analysis was introduced
by Wille (1982), and correlated with association rules
mining by Zaki and Ogihara (1998). Let I be the set
of items and let T be the set of records. Let s be a
mapping between the power set of I and the power
set of T, which associates to a set of itemsets all
records that contain at least one of them. Let t be a
mapping between the power set of T and the power
set of I, that associates to a set of records all itemsets
contained in them. The composition c=t ° s is proven
to be a closure operator.
The context (T, I, ⊂) and the mappings s and t define
a Galois connection between ℘ (I) and ℘ (T).
A concept in this context is a pair (X, Y) of closed
sets, where X⊆T and Y⊆ I, with t(X)=Y and s(Y)=X
(according to this, c(X)=X and c(Y)=Y, so X and Y
are closed sets). X is the extent of the concept, while
Y is the intent of the concept.
Every context (T, I, ⊂) can be associated with a
Galois lattice of concepts, with join and meet
operators derived from the closure operator, c. The
Galois lattice can be represented by a Hasse diagram.
Between a pair (X1, Y1) and (X2, Y2) of concepts, the
relation (X1, Y1)≥ (X2, Y2) means that Y1 ⊂ Y2 and
X1 ⊃ X2. A frequent concept has support(X)
≥min_sup. All frequent itemsets are uniquely
determined by the frequent concepts. There can be
frequent itemsets that are not closed sets, but they are
included in closed sets and are sharing the same
support. These itemsets do not need to be generated
(though, classical algorithms do generate them). They
are called pseudo-intents.
A partial implication rule (c1, c2, conf) is associated
with a pair of concepts that satisfy c1≥c2, where conf

is the precision determined as support(Y2)/
support(Y1).
Association rules are represented at the intent level of
a concept, as Y1⇒ Y2-Y1, with c2 frequent and
p≥min_conf. Whenever Y1 is a pseudo-intent and Y2
is its intent, we have a global implication rule, with
conf=1 (due to the same support).
Note. If (c1, c2, p) and (c2, c3, q) are implication rules,
(c1, c3, p*q) is also an implication rule.

4. DISCOVERY OF ASSOCIATION RULES
FROM RELATIONAL DATABASES

The dawn of association rules mining was focused on
the transactional data bases, mainly to mine the
market basket data. The last few years a new interest
is shown into mining relational databases (Agrawal
and Shim, 1996, Chamberlin, 1996, Dumitriu, et al,
2000, Nestorov and Tsur, 1997, Sarawagi, Thomas
and Agrawal, 1998, Thomas and Sarawagi, 1998).
According to Sarawagi, Thomas and Agrawal
(1998), there are three different ways to interact with
a relational database during the mining process:

- Using a cursor interface. There can be two
variations to this approach, one called loose-
coupling (Agrawal and Shim, 1996) and another
one called stored procedure (Chamberlin, 1996).
The former uses different address spaces for the
DBMS and for the mining engine, the later
encapsulates the mining algorithm into a stored
procedure that runs in the same address space as
the DBMS.
- Using a temporary data cache for the
contents of the database, which is discarded
when the mining process completes.
- Using user-defined functions (UDFs)
(Chamberlin, 1996), running in the same address
space as the DBMS and appropriately placed
into the SQL queries.

Their conclusions were as follows:
- the loose-coupling approach suffers due to
the high cost of context switching between the
DBMS and the mining engine, but, just like the
stored procedure, it offers higher flexibility and
no extra storage requirements;
- the data cache promises better performance
but requires additional disk space for caching;
- UDFs have better argument passing
performance than stored procedure, but since
they are doing most of the processing, there can
be high development costs (involved by the
significant code rewrites (Agrawal and Shim,
1996)).

All these algorithms share the same mining process
as the classical Apriori: generating candidates and
counting support for determining the large itemsets
and, afterwards, generating association rules.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

67

5. ASSOCIATION MEASURES

The measures mentioned in the domain literature
(Kodratoff, 1998) that are used for the evaluation of
A⇒ B relations are:

- measures of statistical significance;
- unexpectedness measures.

Some statistical measures are the support, the
confidence, the interest and the conviction of a
relation.
The interest of A⇒ B, int(A⇒ B), is defined as the
confidence of the relation divided by the support of
B, supp(A⇒ B)/supp(A)*supp(B). This measure
evaluates the pair (A, B) and not the implication,
since its formula is commutative.
The conviction of A⇒ B, conv(A⇒ B), is defined as
supp(A)*supp(¬ B)/ supp(A⇒ ¬ B), meaning
1/int(A⇒ ¬ B). This is commutative too, measuring
the weakness of the pair (A, ¬ B).
There are several unexpectedness measures, for
example, the implication intensity, the exception
measure and the surprise measure.
The implication intensity is computed by comparing
the cardinal of A=>(D-B), meaning the number of
elements contradicting A=>B, with the cardinal of
A'=>(D-B'), where |A'|=|A|, |B'|=|B| and A' and B' are
picked randomly. This comparison should show how
strong is the implication versus a random one.
The exception measure searches for complementary
implications for A=>B, as A∪ A'=>¬ B, trying to
cover the exceptions of A=>B in the data. Generally,
the complementary implications should have a small
support (due to the strong association between A and
B), but a high confidence.
The surprise measure searches pairs of implications
as follows: for A=>B with low interest (ordinary
association), A∪ ¬ A’=>B with high interest.
Comparing the interest expressions, we observe that
the difference comes from the confidence measure of
the implications (since supp(B) is the same). This
means that the A=>B association works better under
certain restrictions.

6. MY APPROACH

The main difference with the approaches mentioned
above is caused, on one hand, by the formal concept
analysis theory. In a traditional algorithm there is
always found the incremental manner in which,
starting from frequent items, larger and larger
candidates are built and validated against the data
base contents. This leads to the generation of pseudo-
intents even though they do not reflect the actual data
contents. On the other hand, the main tool in
accessing a DBMS, the SQL, is not a procedural
language. This makes implementing an Apriori-like
algorithm unnatural.
First we will present some observations.

Lemma 1. Any transaction (record) T in the database
is the intent of a concept.
Proof. Let's assume that T is not an intent.
Consequently, there exists an itemset T' in the
database, where T⊂ T' and supp(T)=supp(T'). Since
T⊂ T', the T' transaction contributes to T 's support,
but T does not contribute to the support of T',
therefore supp(T)>supp(T'). Contradiction. QED.
Any itemset s has a transaction set that contributes to
its support. If we consider s', the intersection of the
transactions in this set, we can prove that s' is a
closed set.
Lemma 2. Any closed itemset is equal to the
intersection of the transactions, represented as sets of
present items, in its supporting transaction set.
Proof. Let {T1, T2, … , Tn} be the supporting
transaction set for a closed itemset s and
s'=T1∩ T2∩ … ∩ Tn be the intersection itemset. Since
{T1, T2, … , Tn} is the supporting transaction set for
s, for any i=1..n, s⊆Ti, i.e. s⊆ s'=T1∩ T2∩ … ∩ Tn
and, subsequently, supp(s)≥supp(s'). But
s'=T1∩ T2∩ … ∩ Tn, so for any i=1..n, s'⊆Ti,
therefore all Ti belong to the supporting transaction
set for s'. Consequently, supp(s')≥supp(s).
Considering that supp(s)≥supp(s'), supp(s')≥supp(s)
and s⊆ s' we can state that, unless s=s', s is a pseudo-
intent. QED.
Lemma 3. The non-empty intersection of two closed
itemsets (intents) is also a closed itemset.
Proof. Let s1 and s2 be the two closed itemsets and
S1 and S2 their supporting transaction sets.
According to Lemma 2., each of s1 and s2 can be
written as the intersections between all transactions
in their supporting set. The intersection between s1
and s2, namely s, becomes the intersection between
transactions in S1∪ S2. Let S be the supporting
transaction set for s. Since s⊆ s1 and s⊆ s2, both S1
and S2 are included in S, therefore S1∪ S2⊆S. Let's
assume that s is a pseudo-intent, so there exists s',
where s⊂ s' and they share the same supporting
transaction set. Because S1⊆S and S2⊆S, we can
infer that s'⊆ s1 and s'⊆ s2. This leads to s1∩ s2=s ⊂
s'⊆ s1∩ s2. Contradiction. QED.

6.1. Finding Exceptions

In our view, we will use two queries (one for the
management of the data base structure) and a user-
defined function for format conversion purposes to
determine all large intents, results denoted as
“large_intents” (Dumitriu, et al, 2000).
Further, we build all association rules, as proper
partial implications, Y1⇒ Y2-Y1, where Y1 and Y2 are
large intents and Y1⊂ Y2, selecting those with enough
confidence.
If we recall the observation in section 2, we can
notice that association rules between intents of non-
adjacent concepts can be derived from those between
intents of adjacent concepts. To spear the storage

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

68

space we can query for the association rules between
the intents of adjacent concepts, alias
“generating_set”, inferring the others afterwards.
The results of the association mining, at this stage,
account for proper partial implications. These
implications can not be considered logical
implications, since there can be some data supporting
A∪ ¬ B. Therefore, finding the exceptions to the rule
can be extremely revealing for the user. We remind
that the exception implication is due to low support,
observation that leads to the necessity of mining all
intents, not only the large ones. Thus, from the
mining SQL query we remove the support threshold
constraint. The alias of these results will be
"all_intents".
After generating all association rules (for reasons of
clarity we will designate these results as
"association_rules") one should try finding the
exceptions to one of the rule. For each association
rule, we are trying to find the itemset C that, together
with A, covers best the A∪ ¬ B area of data. The
A∪ ¬ B has supp(A)-supp(A∪ B) data support. The
confidence of the exception rule, expressed by
supp(A∪ C∪ ¬ B)/ supp(A∪ C), should be high. Thus,
whenever one record contains both A and C, it would
also not contain B. Covering the A∪ ¬ B area of data,
might demand several C itemsets, or a best choice of
C. In our implementation we have selected the later,
so evaluating this best choice means finding the C
itemset, with low support for A∪ C, for which
supp(A∪ C∪ ¬ B), expressed as supp(A∪ C)-
supp(A∪ C∪ B), is closest to supp(A)-supp(A∪ B).

-- mining the exceptions for the association rules
select t1.a, t1.ab, t3.ac,

min(evaluate(t1.sup_a, t1.sup_ab,
t3.sup_ac, t2.sup_abc)) from
(select a, sup_a, ab, sup_ab from
association_rules) t1,
(select a abc, sup_a sup_abc from
all_intents) t2,

 (select a ac, sup_a sup_ac from
all_intents) t3,

where t1.ab like intersect(t2.abc, t1.ab) AND
get_ac_from(t1.a, t1.ab, t2.abc) like t3.ac

group by t1.a, t1.ab;

The get_ac_from function processes the A, A∪ B and
A∪ B∪ C itemsets representations in order to
determine the corresponding A∪ C itemset.
The "evaluate" function computes an expression that
combines:
- the square of the support value for A∪ B∪ C (a

low support for A∪ B∪ C implies that A∪ C does
not account for the presence of B)

- and the square of (supp(A) - supp(A∪ B)) -
(supp(A∪ C) - supp(A∪ B∪ C)) (that quantifies
the way A∪ C covers the A∪ ¬ B area of data).

We are studying different forms for this expression,
in order to analyze the efficiency of the selection.
If the user chooses to store only the "generating_set"
instead of "association_rules", we can always infer
new rules. Finding exceptions for them means
modifying the query to act on a specified association
rule, as follows:

-- mining the exceptions for the association rules
select t3.ac, min(evaluate(sup_a, sup_ab,

t3.sup_ac, t2.sup_abc)) from
 (select a abc, sup_a sup_abc from

all_intents) t2,
 (select a ac, sup_a sup_ac from

all_intents) t3,
where ab like intersect(t2.abc, ab) AND

get_ac_from(a, ab, t2.abc) like t3.ac;

Since we are considering building dynamic queries,
there is no problem in filling the a, b, sup_a and
sup_b values with the ones of the selected association
rule.
The minimum value of the "evaluate" function that
leads to the best exception may not be good enough.
This is either due to the not so low support of
A∪ B∪ C, or due to the way A∪ C covers the A∪ ¬ B
area of data. In the later case, we are also thinking of
finding several disjunctive exceptions to achieve the
cover of the A∪ ¬ B area of data.

6.2. Maintaining Association Rules

Sometimes, maintaining the large itemsets can be
more important then discovering them. The on-line
approach we consider consists in creating database
triggers on insert, delete and update commands on
the database. On these triggers we update the
"all_intents" results.
On insert commands, the new record will be
considered for intersection with every intent. The
intersection may be:
- equal to the intent, in which case the support of

the intent will be incremented;
- equal to another intent, in which case no action is

taken;
- different from all intents, in which case the new

intent is inserted in the "all_intents" database
and its support is counted.

On delete commands, the record will be considered
for intersection with every intent. The intersection
may be:
- equal to the intent, in which case the support of

the intent will be decremented;
- equal to another intent, in which case no action is

taken.
Afterwards, all intents with 0 support are discarded.
On update commands, a delete command for the old
record and an insert command for the new record
will be considered. Discarding the no-support intents
will be accomplish after processing the commands.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

69

7. CONCLUSIONS AND FUTURE WORK

Our approach is fundamentally different then all the
work in finding association rules from relational
databases. All other approaches tried to implement
the classical procedural algorithms in SQL. Since
SQL is not a native procedural language,
implementing procedural algorithms is unnatural.
More, the classical algorithms find artificial results
(the pseudo-intents) that are not really supported by
the data. These artificial results increase the number
of generated association rules with items that have no
significance (rules with a confidence of 100%, called
global implications, that suggest redundancy). Still
we will take into account, as further development,
generating the global implications, too.
At this moment our research is not yet fully
developed as an application. We are using the JDBC
to link the dynamically generated SQL queries with
the rule generation engine and the user interface.
We are also considering the dynamical selection of
the data to be mined from several relations of the
database.

8. REFERENCES

Agrawal, R., Imielinski, T. and Swami (1993)
"Mining association rules between sets of items
in large databases", in Proceedings of 1993
ACM SIGMOD International Conference on
Management of Data, Washington D.C., pp.
207-216.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H.
and Inkeri Verkamo, A. (1996) "Fast discovery
of association rules", in Advances in Knowledge
Discovery and Data Mining, ed. U. Fayyad et al.,
AAAI Press: Menlo Park, CA, pp. 307-328.

Agrawal, R. and Shim, K. (1996) "Developing
Tightly-Coupled Data Mining Applications on a
Relational Database System", in Proceedings of
the 2nd International Conference on Knowledge
Discovery in Databases and Data Mining, ed. E.
Simoudis et al., AAAI Press, Portland, Oregon,
pp. 287-295.

Brin, S., Motwani, R., Ullman, J. and Tsur, S. (1997)
"Dynamic itemset counting and implication rules
for market basket data", in Proceedings of 1997
ACM SIGMOD International Conference on
Management of Data, SIGMOD Record, Vol.
26, No.2, pp. 255-263.

Chamberlin, D. (1996) "Using the New DB2: IBM’s
Object-Relational Database System", Morgan
Kaufmann, San Francisco, pp. 207-216.

Cox, K., Eick, S., Wills, G. and Brachman, R. (1997)
"Visual Data Mining: Recognizing Telephone
Calling Fraud", in Data Mining and Knowledge
Discovery Journal, Kluwer Academic
Publishers, vol. 1, pp. 225-231.

Dumitriu, L., Pecheanu, E., Istrate, A. and Segal, C.
(2000) “Finding association rules from relational
databases”, in Proceedings of the International
Conference Data Mining 2000, Cambridge, pp..

Dumitriu, L., Pecheanu, E., Istrate, A. and Segal,
C.(2000) "Finding association rules from
relational databases via SQL queries", in Control
Engineering and Applied Informatics Journal,
Mediamira Science Publisher, vol. 2, pp.59-64.

Houtsma, M. and Swami, A. (1995) "Set-oriented
mining of association rules in relational
databases", in Proceedings of the 11th
International Conference on Data Engineering,
IEEE Computer Society Press, Los Alamitos,
pp.25-34.

Kodratoff, Y. (1998) "Research Topics in Knowledge
Discovery in Data and Texts", invited talk at the
3rd SIGMOD’98 Workshop on Research Issues
in Data Mining and Knowledge Discovery
(DMKD), Seattle, WA.

Lin, D-I. and Kedem, Z.M. (1998) "Pincer-Search: a
new algorithm for discovering the maximum
frequent set", in Proceedings of the 6th
International Conference on Extending Database
Technology, Lecture Notes in Computer
Science, Springer-Verlag, 1377, pp.105-113.

Lin, J-L. and Dunham, M.H. (1998) "Mining
association rules: Anti-skew algorithms", in
Proceedings of the 14th International Conference
on Data Engineering, IEEE Computer Society
Press, Los Alamitos, pp.125-133.

Nestorov, S. and Tsur, S. (1997) "Using DB2’s
Object Relational Extensions for Mining
Association Rules", Technical Report TR 03690,
Santa Teresa Laboratories, IBM Corporation.

Park, J.S., Chen, M. and Yu, P.S. (1995) "An
effective hash-based algorithm for mining
association rules", in Proceedings of 1995 ACM
SIGMOD International Conference on
Management of Data, San Jose, pp.175-186.

Sarawagi, S., Thomas, S. and Agrawal, R., (1998)
"Integrating Association Rule Mining with
Relational Database Systems: Alternatives and
Implications", in Proceedings of 1998 ACM
SIGMOD International Conference on
Management of Data, Seattle, pp. 343-354.

Savasere, A., Omiecinski, E. and Navathe, S. (1995)
"An efficient algorithm for mining association
rules in large databases", in Proceedings of the
21st International Conference on Very Large
Data Bases, ed. U. Dayal et al., Morgan
Kaufmann, Los Altos, pp. 432-444.

Thomas, S. and Sarawagi, S. (1998) "Mining
Generalized Association Rules and Sequential
Patterns Using SQL Queries", in Proceedings of
the 4th International Conference on Knowledge
Discovery and Data Mining, New York, pp. 344-
348.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

70

Toivonen, H., (1996) "Sampling large databases for
association rules", in Proceedings of the 22nd
International Conference on Very Large Data
Bases, ed. T.M. Vijayarama et al., Morgan
Kaufmann, Los Altos, pp. 134-145.

Wille, R. (1982) "Restructuring lattice theory: an
approach based on hierarchies of concepts", in
Ordered Sets, Proceedings of NATO Advanced
Study Institute, D. Reidel Publisher Co., pp. 445-
470.

Zaki, M.J., Parthasarathy, S.,Ogihara, M. and Li, W.,
(1997) "New algorithms for fast discovery of
association rules", in Proceedings of the 3rd
International Conference on Knowledge
Discovery and Data Mining, ed. D. Heckerman
et al., AAAI Press, pp.283-29.

Zaki, M.J. and Ogihara, M. (1998) "Theoretical
Foundations of Association Rules", in
Proceedings of the 3rd SIGMOD’98 Workshop
on DMKD, Seattle, WA, pp 7:1-7:8.

