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Abstract: Finding association rules is mainly based on generating larger and larger 
frequent set candidates, starting from frequent attributes in the database. The frequent 
sets can be organised as a part of a lattice of concepts according to the Formal Concept 
Analysis approach. Since the lattice construction is database contents-dependent, the 
pseudo-intents (see Formal Concept Analysis) are avoided. Association rules between 
concept intents (closed sets) A=>B are partial implication rules, meaning that there is 
some data supporting A and (not B); fully explaining the data requires finding 
exceptions for the association rules.  The approach applies to Oracle databases, via SQL 
queries. 
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1. INTRODUCTION  

The data mining research has very much grown in the 
last decade. The major applications attempt to define 
customer's profile (for retail, transportation or other 
services), to detect frauds (for healthcare&insurance 
or telecommunications (Cox, et al., 1997)), to 
analyse credit risks (in the financial domain), etc.  
The discovery of association rules, one of the most 
researched techniques for data mining, attempts 
finding frequent patterns among large sets of data 
attributes. Most of the recent work has been 
concentrated on developing efficient mining 
algorithms (Agrawal, et al., 1993, Agrawal, et al, 
1996, Brin, et al, 1997, Dumitriu, et al, 2000, Lin and 
Dunham, 1998, Park, Chan and Yu, 1995, Savasere, 
Omiecinski and Navathe, 1995, Toivonen, 1996, 
Zaki, et al., 1997). There are also efforts on 
expressing a coherent association theory (Zaki, et al., 
1998). A major part of the research was focused on 
dealing with transactional databases, but there are 
important contributions in the study of relational 
database systems (Agrawal and Shim, 1996, 
Nestorov  and Tsur, 1997, Sarawagi, Thomas and 
Agrawal, 1998, Thomas and Sarawagi, 1998). 

2. FREQUENT SETS AND ASSOCIATION RULES 

The description of the association rules mining was 
first given by Agrawal et al. (1993). The set of items 
or attributes are designated by the literals I = { I1, I2, 
… , In}. A record (or transaction) contains some of 
the items of I, for the transactional data base case, or 
contains their presence information, for the relational 
data base case. We will denote this relation through 
the inclusion operator, ⊂ . The input data for the 
mining algorithms consists in a set of records. Any 
set of items of I is called an itemset. An association 
rule is a relation between itemsets, A⇒ B, where A 
and B are contained in some transaction, and 
A∩ B=∅ . A is the antecedent of the rules, and B is 
the consequent. 
An itemset is associated with a measure of frequency, 
called support, and support (X) denotes the ratio 
between the number of records that contain X and the 
total number of records in the data set. For a rule, the 
support measure refers to the A∪ B set. The strength 
of an association A⇒ B is measured by the 
confidence of the rule determined as support 
(A∪ B)/support (A). 
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Mining association rules is finding all the rules that 
exceed two user-specified thresholds, one for 
support, min_sup, and one for confidence, min_conf. 
An itemset that exceeds the support threshold is a 
large itemset. Let S be a large itemset, for any A⊂ S 
and support (S)/support (A)≥min_conf, A⇒ S-A is an 
association rule. Therefore, classically finding 
association rules consists in two stages: 

- Discovering all large itemsets. This stage is 
classically split into two parts: candidate-
generation step, of an incremental manner, and 
large item selection, counting the support of the 
candidates and pruning the ones that are not 
large; 
- Determining the rules with enough 
confidence.  

The main algorithms are sequential or parallel, 
running on the entire data set or only on a training 
set, use different approaches to reduce the number of 
data base scans or the amount of storage memory. 
 

3. FORMAL CONCEPT ANALYSIS 

The theory of formal concept analysis was introduced 
by Wille (1982), and correlated with association rules 
mining by Zaki and Ogihara (1998). Let I be the set 
of items and let T be the set of records. Let s be a 
mapping between the power set of I and the power 
set of T, which associates to a set of itemsets all 
records that contain at least one of them. Let t be a 
mapping between the power set of T and the power 
set of I, that associates to a set of records all itemsets 
contained in them. The composition c=t ° s is proven 
to be a closure operator. 
The context (T, I, ⊂ ) and the mappings s and t define 
a Galois connection between ℘ (I) and ℘ (T). 
A concept in this context is a pair (X, Y) of closed 
sets, where X⊆T and Y⊆ I, with t(X)=Y and s(Y)=X 
(according to this, c(X)=X and c(Y)=Y, so X and Y 
are closed sets). X is the extent of the concept, while 
Y is the intent of the concept. 
Every context (T, I, ⊂ ) can be associated with a 
Galois lattice of concepts, with join and meet 
operators derived from the closure operator, c. The 
Galois lattice can be represented by a Hasse diagram. 
Between a pair (X1, Y1) and (X2, Y2) of concepts, the 
relation (X1, Y1)≥ (X2, Y2) means that Y1 ⊂ Y2 and 
X1 ⊃ X2. A frequent concept has support(X) 
≥min_sup. All frequent itemsets are uniquely 
determined by the frequent concepts. There can be 
frequent itemsets that are not closed sets, but they are 
included in closed sets and are sharing the same 
support. These itemsets do not need to be generated 
(though, classical algorithms do generate them). They 
are called pseudo-intents. 
A partial implication rule (c1, c2, conf) is associated 
with a pair of concepts that satisfy c1≥c2, where conf 

is the precision determined as support(Y2)/ 
support(Y1).  
Association rules are represented at the intent level of 
a concept, as Y1⇒ Y2-Y1, with c2 frequent and 
p≥min_conf. Whenever Y1 is a pseudo-intent and Y2 
is its intent, we have a global implication rule, with 
conf=1 (due to the same support). 
Note. If (c1, c2, p) and (c2, c3, q) are implication rules, 
(c1, c3, p*q) is also an implication rule. 
 

4. DISCOVERY OF ASSOCIATION RULES 
FROM RELATIONAL DATABASES 

The dawn of association rules mining was focused on 
the transactional data bases, mainly to mine the 
market basket data. The last few years a new interest 
is shown into mining relational databases (Agrawal 
and Shim, 1996, Chamberlin, 1996, Dumitriu, et al, 
2000, Nestorov  and Tsur, 1997, Sarawagi, Thomas 
and Agrawal, 1998, Thomas and Sarawagi, 1998). 
According to  Sarawagi, Thomas and Agrawal 
(1998), there are three different ways to interact with 
a relational database during the mining process: 

- Using a cursor interface. There can be two 
variations to this approach, one called loose-
coupling (Agrawal and Shim, 1996) and another 
one called stored procedure (Chamberlin, 1996). 
The former uses different address spaces for the 
DBMS and for the mining engine, the later 
encapsulates the mining algorithm into a stored 
procedure that runs in the same address space as 
the DBMS. 
- Using a temporary data cache for the 
contents of the database, which is discarded 
when the mining process completes. 
- Using user-defined functions (UDFs) 
(Chamberlin, 1996), running in the same address 
space as the DBMS and appropriately placed 
into the SQL queries. 

Their conclusions were as follows: 
- the loose-coupling approach suffers due to 
the high cost of context switching between the 
DBMS and the mining engine, but, just like the 
stored procedure, it offers higher flexibility and 
no extra storage requirements; 
- the data cache promises better performance 
but requires additional disk space for caching; 
- UDFs have better argument passing 
performance than stored procedure, but since 
they are doing most of the processing, there can 
be high development costs (involved by the 
significant code rewrites (Agrawal and Shim, 
1996)). 

All these algorithms share the same mining process 
as the classical Apriori: generating candidates and 
counting support for determining the large itemsets 
and, afterwards, generating association rules.
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5. ASSOCIATION MEASURES 

The measures mentioned in the domain literature 
(Kodratoff, 1998) that are used for the evaluation of 
A⇒ B relations are: 

- measures of statistical significance; 
- unexpectedness measures. 

Some statistical measures are the support, the 
confidence, the interest and the conviction of a 
relation. 
The interest of A⇒  B, int(A⇒ B), is defined as the 
confidence of the relation divided by the support of 
B, supp(A⇒ B)/supp(A)*supp(B). This measure 
evaluates the pair (A, B) and not the implication, 
since its formula is commutative. 
The conviction of A⇒ B, conv(A⇒ B), is defined as 
supp(A)*supp(¬ B)/ supp(A⇒ ¬ B), meaning 
1/int(A⇒ ¬ B). This is commutative too, measuring 
the weakness of the pair (A, ¬ B). 
There are several unexpectedness measures, for 
example, the implication intensity, the exception 
measure and the surprise measure. 
The implication intensity is computed by comparing 
the cardinal of A=>(D-B), meaning the number of 
elements contradicting A=>B, with the cardinal of 
A'=>(D-B'), where |A'|=|A|, |B'|=|B| and A' and B' are 
picked randomly. This comparison should show how 
strong is the implication versus a random one. 
The exception measure searches for complementary 
implications for A=>B, as A∪ A'=>¬ B, trying to 
cover the exceptions of A=>B in the data. Generally, 
the complementary implications should have a small 
support (due to the strong association between A and 
B), but a high confidence. 
The surprise measure searches pairs of implications 
as follows: for A=>B with low interest (ordinary 
association), A∪ ¬ A’=>B with high interest. 
Comparing the interest expressions, we observe that 
the difference comes from the confidence measure of 
the implications (since supp(B) is the same). This 
means that the A=>B association works better under 
certain restrictions. 

 
6. MY APPROACH 

The main difference with the approaches mentioned 
above is caused, on one hand, by the formal concept 
analysis theory. In a traditional algorithm there is 
always found the incremental manner in which, 
starting from frequent items, larger and larger 
candidates are built and validated against the data 
base contents. This leads to the generation of pseudo-
intents even though they do not reflect the actual data 
contents. On the other hand, the main tool in 
accessing a DBMS, the SQL, is not a procedural 
language. This makes implementing an Apriori-like 
algorithm unnatural. 
First we will present some observations. 

Lemma 1. Any transaction (record) T in the database 
is the intent of a concept. 
Proof. Let's assume that T is not an intent. 
Consequently, there exists an itemset T' in the 
database, where T⊂ T' and supp(T)=supp(T'). Since 
T⊂ T', the T' transaction contributes to T 's support, 
but T does not contribute to the support of T', 
therefore supp(T)>supp(T'). Contradiction. QED. 
Any itemset s has a transaction set that contributes to 
its support. If we consider s', the intersection of the 
transactions in this set, we can prove that s' is a 
closed set. 
Lemma 2. Any closed itemset is equal to the 
intersection of the transactions, represented as sets of 
present items, in its supporting transaction set. 
Proof. Let {T1, T2, … , Tn} be the supporting 
transaction set for a closed itemset s and 
s'=T1∩ T2∩ … ∩ Tn be the intersection itemset. Since 
{T1, T2, … , Tn} is the supporting transaction set for 
s, for any i=1..n, s⊆Ti, i.e. s⊆  s'=T1∩ T2∩ … ∩ Tn 
and, subsequently, supp(s)≥supp(s'). But 
s'=T1∩ T2∩ … ∩ Tn, so for any i=1..n, s'⊆Ti, 
therefore all Ti belong to the supporting transaction 
set for s'. Consequently, supp(s')≥supp(s). 
Considering that supp(s)≥supp(s'), supp(s')≥supp(s) 
and s⊆ s' we can state that, unless s=s', s is a pseudo-
intent. QED. 
Lemma 3. The non-empty intersection of two closed 
itemsets (intents) is also a closed itemset. 
Proof. Let s1 and s2 be the two closed itemsets and 
S1 and S2 their supporting transaction sets. 
According to Lemma 2., each of s1 and s2 can be 
written as the intersections between all transactions 
in their supporting set. The intersection between s1 
and s2, namely s, becomes the intersection between 
transactions in S1∪ S2. Let S be the supporting 
transaction set for s. Since s⊆ s1 and s⊆ s2, both S1 
and S2 are included in S, therefore S1∪ S2⊆S. Let's 
assume that s is a pseudo-intent, so there exists s', 
where s⊂ s' and they share the same supporting 
transaction set. Because S1⊆S and S2⊆S, we can 
infer that s'⊆ s1 and s'⊆ s2. This leads to s1∩ s2=s ⊂  
s'⊆  s1∩ s2. Contradiction. QED. 
 
6.1. Finding Exceptions 

In our view, we will use two queries (one for the 
management of the data base structure) and a user-
defined function for format conversion purposes to 
determine all large intents, results denoted as 
“large_intents” (Dumitriu, et al, 2000). 
Further, we build all association rules, as proper 
partial implications, Y1⇒ Y2-Y1, where Y1 and Y2 are 
large intents and Y1⊂ Y2, selecting those with enough 
confidence. 
If we recall the observation in section 2, we can 
notice that association rules between intents of non-
adjacent concepts can be derived from those between 
intents of adjacent concepts. To spear the storage 
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space we can query for the  association rules between 
the intents of adjacent concepts, alias 
“generating_set”, inferring the others afterwards. 
The results of the association mining, at this stage, 
account for proper partial implications. These 
implications can not be considered logical 
implications, since there can be some data supporting 
A∪ ¬ B. Therefore, finding the exceptions to the rule 
can be extremely revealing for the user. We remind 
that the exception implication is due to low support, 
observation that leads to the necessity of mining all 
intents, not only the large ones. Thus, from the 
mining SQL query we remove the support threshold 
constraint. The alias of these results will be 
"all_intents".  
After generating all association rules (for reasons of 
clarity we will designate these results as 
"association_rules") one should try finding the 
exceptions to one of the rule. For each association 
rule, we are trying to find the itemset C that, together 
with A, covers best the A∪ ¬ B area of data.  The 
A∪ ¬ B has supp(A)-supp(A∪ B) data support. The 
confidence of the exception rule, expressed by 
supp(A∪ C∪ ¬ B)/ supp(A∪ C), should be high. Thus, 
whenever one record contains both A and C, it would 
also not contain B. Covering the A∪ ¬ B area of data, 
might demand several C itemsets, or a best choice of 
C.  In our implementation we have selected the later, 
so evaluating this best choice means finding the C 
itemset, with low support for A∪ C, for which 
supp(A∪ C∪ ¬ B), expressed as supp(A∪ C)-
supp(A∪ C∪ B), is closest to supp(A)-supp(A∪ B).  
 
-- mining the exceptions for the association rules 
select t1.a, t1.ab, t3.ac,  

min(evaluate(t1.sup_a, t1.sup_ab,  
t3.sup_ac, t2.sup_abc)) from 
(select a, sup_a, ab, sup_ab from  
association_rules) t1, 
(select  a abc, sup_a sup_abc from 
all_intents) t2, 

 (select  a ac, sup_a sup_ac from  
all_intents) t3, 

where t1.ab like intersect(t2.abc, t1.ab) AND  
get_ac_from(t1.a, t1.ab, t2.abc) like t3.ac 

group by t1.a, t1.ab; 
 
The get_ac_from function processes the A, A∪ B and 
A∪ B∪ C itemsets representations in order to 
determine the corresponding A∪ C itemset.  
The "evaluate" function computes an expression that 
combines: 
- the square of the support value for A∪ B∪ C (a 

low support for A∪ B∪ C implies that A∪ C does 
not account for the presence of B)  

- and the square of (supp(A) - supp(A∪ B)) - 
(supp(A∪ C) - supp(A∪ B∪ C)) (that quantifies 
the way A∪ C covers the A∪ ¬ B area of data). 

We are studying different forms for this expression, 
in order to analyze the efficiency of the selection. 
If the user chooses to store only the "generating_set" 
instead of "association_rules", we can always infer 
new rules. Finding exceptions for them means 
modifying the query to act on a specified association 
rule, as follows: 
 
-- mining the exceptions for the association rules 
select t3.ac, min(evaluate(sup_a, sup_ab,  

t3.sup_ac, t2.sup_abc)) from 
 (select  a abc, sup_a sup_abc from  

all_intents) t2, 
 (select  a ac, sup_a sup_ac from  

all_intents) t3, 
where ab like intersect(t2.abc, ab) AND  

get_ac_from(a, ab, t2.abc) like t3.ac; 
 
Since we are considering building dynamic queries, 
there is no problem in filling the a, b, sup_a and 
sup_b values with the ones of the selected association 
rule. 
The minimum value of the "evaluate" function that 
leads to the best exception may not be good enough. 
This is either due to the not so low support of 
A∪ B∪ C, or due to the way  A∪ C covers the A∪ ¬ B 
area of data. In the later case, we are also thinking of 
finding several disjunctive exceptions to achieve the  
cover of the A∪ ¬ B area of data. 
 
6.2. Maintaining Association Rules 

Sometimes, maintaining the large itemsets can be 
more important then discovering them. The on-line 
approach we consider consists in creating database 
triggers on insert, delete and update commands on 
the database. On these triggers we update the 
"all_intents" results. 
On insert commands, the new record will be 
considered for intersection with every intent. The 
intersection may be: 
- equal to the intent, in which case the support of 

the intent will be incremented; 
- equal to another intent, in which case no action is 

taken; 
- different from all intents, in which case the new 

intent is inserted in the "all_intents" database 
and its support is counted. 

On delete commands, the record will be considered 
for intersection with every intent. The intersection 
may be: 
- equal to the intent, in which case the support of 

the intent will be decremented; 
- equal to another intent, in which case no action is 

taken. 
Afterwards, all intents with 0 support are discarded. 
On update commands, a delete command for the old 
record and an insert command for the new record 
will be considered. Discarding the no-support intents 
will be accomplish after processing the commands. 



THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI 
FASCICLE III, 2000 ISSN 1221-454X 

69 

7. CONCLUSIONS AND FUTURE WORK 

Our approach is fundamentally different then all the 
work in finding association rules from relational 
databases. All other approaches tried to implement 
the classical procedural algorithms in SQL. Since 
SQL is not a native procedural language, 
implementing procedural algorithms is unnatural. 
More, the classical algorithms find artificial results 
(the pseudo-intents) that are not really supported by 
the data. These artificial results increase the number 
of generated association rules with items that have no 
significance (rules with a confidence of 100%, called 
global implications, that suggest redundancy). Still 
we will take into account, as further development, 
generating the global implications, too. 
At this moment our research is not yet fully 
developed as an application. We are using the JDBC 
to link the dynamically generated SQL queries with 
the rule generation engine and the user interface.  
We are also considering the dynamical selection of 
the data to be mined from several relations of the 
database. 
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