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Abstract: The paper proposes a global stability analysis method dedicated to fuzzy 
control systems containing Mamdani PI-fuzzy controllers with output integration to 
control SISO linear / linearized plants. The method is expressed in terms of relatively 
simple steps, and it is based on: the generalization of the describing function method for 
the considered fuzzy control systems to the MIMO case, the approximation of the 
describing functions by applying the least squares method. The method is applied to the 
stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by 
considering a case study. 
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1. INTRODUCTION 

 
Fuzzy control systems (abbreviated as FCSs) are 
nonlinear control systems, and the dynamic 
behaviour of these systems is more complex than that 
of linear systems. With this respect the main 
differences between the nonlinear systems and the 
linear ones are: 
 - the nonlinear systems can reach multiple steady-
state regimes instead of the single-point attractor 
associated with the operating point in the case of 
linear systems, 
 - the nonlinear systems can perform long-term 
behaviours including the limit cycles and the chaotic 
behaviours, that are more complicated than the point 
attractors corresponding to linear systems. 
 
In the general framework of the qualitative theory of 
nonlinear dynamical systems (for example, (Khalil, 
1991)), several approaches and overviews (Driankov, 
et al., 1993; Wang, 1997; Passino and Yurkovich, 
1998; Sugeno, 1999) have been widely used for the 
stability analysis of FCSs. These approaches include: 
 
(a) the state-space approach, based on a linearized 
model of the nonlinear dynamical system (Aracil, et 
al., 1989; Garcia-Cerezo and Ollero, 1992; Precup, et 
al., 2002), 

(b) Popov’s hyperstability theory (Opitz, 1993; 
Precup and Preitl, 1997), 
(c) Lyapunov’s stability theory (Passino and 
Yurkovich, 1998; Sugeno, 1999), 
(d) the circle criterion (Driankov, et al., 1993; Opitz, 
1993; Passino and Yurkovich, 1998), 
(e) the describing function method referred to also as 
the harmonic balance method (Kiendl, 1993; Passino 
and Yurkovich, 1998), etc. 
 
This paper aims to propose a stability analysis 
method (SAM) belongs to the approach (e). It is 
dedicated to FCSs employing Mamdani PI-fuzzy 
controllers with output integration (PI-FC-OIs) to 
control SISO linear / linearized plants. The support 
for using a fuzzy controller (FC) to control a plant 
having a linear or linearized model is in the fact that 
this controlled plant (CP) model can be considered as 
a simplified model of a relatively complex model of 
the CP. So, the CP is nonlinear but linearized in the 
vicinity of a set of operating points or of a trajectory. 
The FC, as nonlinear element, can compensate – 
based on the designer’s experience – the model 
uncertainties, nonlinearities and CP parametric 
variations. 
The SAM proposed in the paper is based on the 
describing function method and represents a global 
SAM. Existing approaches to the describing function 
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method used in the stability analysis of FCSs deal 
with the following applications of this method: 
- in the form of the exponential-input describing 

function technique to FCSs using the 
representations of the FCs as multidimensional-
multilevel relays (Abdelnour, et al., 1993a, 
1993b), 

- to FCSs based on Mamdani FCs without 
dynamics (Kiendl, 1993; Passino and Yurkovich, 
1998); 

- to multivariable Takagi-Sugeno FCSs (Cuesta, et 
al., 1999), 

- to FCSs based on FCs with dynamics, by using 
the describing function of the saturation which 
occurs outside the universe of discourse region 
of the FCs (Aracil and Gordillo, 2000). 

 
All these approaches require the prediction of the 
limit cycles, specific to the describing function 
method (Kim, et al., 2000). 
 
Since the PI-fuzzy controllers (PI-FCs) with 
dynamics can be considered from the point of view of 
the basic fuzzy controller (without dynamics) as 
MIMO systems, the main contribution of this paper is 
to generalize the describing function method to the 
MIMO case of FCSs based on Mamdani PI-FC-OIs. 
Applying the least squares method performs the 
approximation of the describing functions. The 
proposed SAM is expressed in terms of relatively 
simple to be proceeded steps. 
 
This paper is organized as follow. In the next Section 
the Mamdani PI-FC-OIs it will be reviewed. In 
Section 3 the describing function method is applied, 
the resulting SAM is derived and its steps are 
presented. Then, Section 4 addresses the application 
of the SAM to the stability analysis of a class of 
FCSs meant for controlling a class of servo-systems 
and validates the proposed method by considering a 
case study. Section 5 draws the conclusions. 
 
 

2. PI-FUZZY CONTROLLER WITH OUTPUT 
INTEGRATION 

 
The structure of the considered FCS is a conventional 
one, presented in Fig. 1, where: r – the reference 
input, y – the controlled output, yre −=  – the 
control error, u – the control signal, d1, d2, d3 – the 
disturbance inputs, and the CP includes the actuator 
and the measuring device. 
 
The considered PI-fuzzy controller with output 
integration (PI-FC-OI) can be considered as type-II 
fuzzy systems (Sugeno, 1999), or Mamdani FCs with 
singleton consequents, a special case of Takagi-
Sugeno FCs. The PI-FC-OI represents a discrete-time 
FC with dynamics, introduced by: 
- the numerical differentiation of control error ek 

expressed as its increment, ∆ek, 1−−=∆ kkk eee , 

 
 
Fig. 1. Structure of fuzzy control system. 
 
- the numerical integration of the increment of 

control signal, ∆uk, kkk uuu ∆+= −1 , 
 
with k – the index of current sampling interval. The 
PI-FC-OI structure is shown in Fig. 2, where B-FC 
represents the basic fuzzy controller, without 
dynamics. 
 
The block B-FC is a nonlinear two inputs-single 
output (TISO) system, which includes among its 
nonlinearities the scaling of inputs and output as part 
of its fuzzification module. The fuzzification is 
solved in the initial phase by means of the regularly 
distributed input and output membership functions 
illustrated in Fig. 3. Other distributions of the 
membership functions can modify in a desired way 
the controller nonlinearities. 
 
The inference engine in B-FC employs Mamdani’s 
MAX-MIN compositional rule of inference assisted 
by the rule base presented in Table 1, and the centre 
of gravity method for singletons is used for 
defuzzification. 
 

 
 
Fig. 2. Structure of PI-fuzzy controller with output 

integration. 
 

 
 
Fig. 3. Membership functions of input and output 

linguistic variables in B-FC. 
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Table 1 Decision table of B-FC 

 
∆ek\ ek NB NS ZE PS PB 
PB ZE PS PM PB PB 
PS NS ZE PS PM PB 
ZE NM NS ZE PS PM 
NS NB NM NS ZE PS 
NB NB NB NM NS ZE 

 
Fig. 3 highlights the strictly positive parameters of 
the PI-FC-OI to be tuned by the development 
method, Be, B∆e and B∆u. For the development of the 
PI-FC-OI the start is in the expression of the discrete-
time equation of a digital PI controller in its 
incremental version: 
 
(1)   ).( kkPkIkPk eeKeKeKu ⋅α+∆=+∆=∆  

 
In the case of a quasi-continuous digital PI controller 
the parameters KP, KI and α can be computed as 
functions of the parameters kC (gain) and Ti (integral 
time constant) of a basic continuous-time PI 
controller having the transfer function (t.f.) HC(s): 
 

(2)   , ))/(11()( iCC TsksH +=
 

and the connections between {KP, KI, α} and {kC, Ti} 
have the following form when Tustin’s method (the 
trapezoid rule) is employed: 
 

(3)    
, )2/(2/

,/  ,)]2/(1[

sisPI

isCIisCP

TTTKK

TTkKTTkK

−==α

=−=

 

with Ts – sampling period chosen in accordance with 
the requirements of quasi-continuous digital control. 
 

The design relations of the PI-FC-OI are obtained by 
the application of the modal equivalence principle 
(Galichet and Foulloy, 1995) particularized as (4): 
 

(4)   , eIuee BKBBB =⋅α= ∆∆   ,
 

where the free parameter Be represents the designer’s 
option. Using the experience in controlling the plant 
one can choose the value of this parameter, but firstly 
it must be chosen to ensure the aim of a stable FCS. 
 

3. DESCRIBING FUNCTION METHOD 
 
For the formulation of the SAM based on the 
application of the describing function method it is 
necessary to transform the initial FCS structure into a 
MIMO one because the block B-FC in Fig. 2 is a 
TISO system. This modified FCS structure is 
illustrated in Fig. 4, where the dynamics of the fuzzy 
controller (its linearized part) is transferred to the 
plant CP resulting in the extended controlled plant 
(ECP, a linear block). The vectors in Fig. 4, rk – the 
reference input vector, ek – the control error vector, uk 
– the control signal vector and yk – the controlled 
output vector, are defined as follows: 
 

(5)    
,]  [  ,]  [

,]  [  ,]  [
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Fig. 4. Structure of FCS used in stability analysis. 
 

where 1−−=∆ kkk vvv  stands for the increment of 
the vector vk, ∆uf,k is the fictitious increment of 
control signal and the upper index T stands for matrix 
transposition. 
 

The FCS structure in Fig. 4 can be used in both the 
discrete-time case and the continuous-time case, with 
the vectors defined in terms of (6): 
 

(6)    
,)](  )([)(  ,)](  )([)(

,)](  )([)(  ,)](  )([)(

2121
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TT

TT
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==
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and the correspondence between the vectors in (5) 
and (6) is immediate. 
 

The nonlinear input-output static map F characterizes 
the block FC in Fig. 4: 
 

(7)   , T
kk fRR ]0  ),([)(  ,: 22 eeFF =→

 

where f ( ) is the input-output static map 
of the nonlinear TISO system B-FC in Fig. 2. 
Therefore, the modified FCS structure presented in 
Fig. 4 has only one time-invariant and memoryless 
nonlinear component, the block FC. 

RRf →2:

 

In this context, for the application of the describing 
function method the following two conditions must 
be fulfilled (Passino and Yurkovich, 1998): 
 - the nonlinear function F should be an odd function; 
 - the linear block ECP should have characteristics of 
a low-pass filter. 
 

All variables in the modified FCS structure, 
presented in Fig. 4, have two components (see (5) 
and (6)). This required the introduction of a fictitious 
control signal, supplementary to the outputs of the 
block B-FC, for obtaining an equal number of inputs 
and outputs due to the necessity of the stability theory 
in the MIMO case (Landau, 1979). 
 

The mathematical model of the block ECP can be 
derived by starting with the t.f. of the controlled plant 
with respect to the control signal (see Fig. 1), HCP(s). 
Discetizing HCP(s) by taking into account the 
presence of a zero-order hold – in the conditions of a 
sampling period chosen in accordance with the 
requirements of quasi-continuous digital control – 
leads to the pulse t.f. of the controlled plant, HZCP(z): 
 

(8)   . ]}/)([{)1()( 11 ssHLZzzH CPZCP
−−−=

 

The pulse t.f. of the CP together with the integrator 
(in Fig. 2), HICP(z), can be expressed as: 

 

(9)   . ]}/)([{)( 1 ssHLZzH CPICP
−=
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For obtaining continuous-time equivalents H11(s) and 
H21(s) of the pulse t.f.s in (9) and (8), respectively, it 
is applied Tustin’s method that maps the z-plane to 
the s-plane (Franklin, et al., 1998): 
 

(10)   

. 
)()(
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By using the definition of the vectors in (6), the 
transfer matrix H(s) of the block ECP will have the 
expression (11): 
 

(11)   
2,1,)]([)(

=
= jiij sHsH . 

 

The two t.f.s H12(s) and H22(s) in (11) have no effect 
on the FCS stability analysis because they correspond 
to the fictitious control signal c2(t) (in the discrete 
case, the fictitious increment of control signal ∆uf,k). 
This is also the reason why the second component of 
F in (6) is zero. 
 

For an input e(t) (defined in (6)) to the block FC (in 
Fig. 4): 
 

(12)   2,1  ),sin()( =ω= ltAti ll , 
 

where the input amplitudes are a = [A1  A2]T, Al > 0, 
2,1=l , and the frequency is ω > 0, there will be 

obtained the output u(t) (defined in (6)) expanded 
into a Fourier series: 
 

(13)   
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with the following expressions of the Fourier 
coefficients: 
 

(14)   
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In the accepted conditions, a0,m = 0 and by neglecting 
the higher order harmonics with respect to the 
fundamental harmonics, the result will be expressed 
as the describing functions Nml(a, ω) that will not 
depend on ω and so will be written as Nml(a): 
 

(15)   2,1,  ,/)( ,1 == mlAbN lmml a . 
 
Neglecting the effect of the fictitious (increment of) 
control signal on the stability analysis requires the 
necessity for: 
 

(16)   2,1  ,0)(2 == lN l a . 
 

By defining the describing function matrix N(a): 
 

(17)   
2,1,

)]([)(
=

=
mlmlN aaN , 

 
the harmonic balance equation can be written as 
(Cuesta, et al., 1999): 
 

(18)   . )1,1diag(  ,]0  0[))()(( ==+ω IaIaNH Tj
 
If any limit cycles exist in the FCS, then their 
existence can be predicted by solving the equation 
(18) with respect to a and ω. 
 
There can be employed several ways for the 
computation of the describing functions. This 
problem can be solved easily if the analytical 
expression of the function f is known. If this is not 
the case, the problem is more complex and can be 
solved by using the numerical integration in (14). 
Another approach is based on performing an 
experiment with the nonlinear block FC in Fig. 4, 
assisted by the application of the least squares 
method. Similar experiments were performed by 
Passino and Yurkovich (1998) but in the SISO case. 
 
The SAM can be formulated in terms of the 
following steps: 
 
 - Step 1: Express the transfer matrix of the block 
ECP in (11) by using (8) … (10). 
 
 - Step 2: Perform the experiments and apply the least 
squares method to compute a sufficient number M of 
values of the describing function matrix 

Mqq ,1 ,)( =aN . 
 
 - Step 3: Obtain the solutions of the harmonic 
balance equation (18) by using numerical techniques 
to solve the optimization problem (19): 
 

(19)   , ||))()((||min
0 ,2

aIaNH
a

+ω
>ω∈

j
R

 
having the solutions a* – the input amplitudes and ω* 
– the frequency of the limit cycles, and ||v|| represents 
generally the Euclidean norm of the vector v. 
 
 - Step 4: Solve the optimization problem (20): 
 

(20)   ||))()((||min
0 ,2 iR

j εaIaNH
a

−+ω
>ω∈

, 

 
for two relatively small values of , T

iii ]  [ ,2,1 εε=ε

2,1=i , 0  ,0  ,0  0, 2,22,11,21,1 <ε<ε>ε>ε , and the 

solutions of (20) are ai and ωi, 2,1=i . 
 
 - Step 5: If ||a1|| < ||a*|| and ||a2|| > ||a*||, then the 
corresponding limit cycle is stable and the FCS is 
globally stable. The FCS is globally stable also if the 
equation (19) does not have any solutions. 
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4. APPLICATION 

 
This Section is dedicated to the validation of the 
proposed SAM by its application to the stability 
analysis of a class of FCSs dedicated to control of a 
class of servo-systems. In this case the CP is 
characterized by the t.f. (21): 
 

(21)   , )]1)(1/[()( 1sTsTksH PCP ++= Σ
 
where: T1 – large time constant, TΣ – small time 
constant or time constant corresponding to the sum of 
parasitic time constants (TΣ << T1), and kP – gain. In 
these conditions, from a theoretical point of view, 
HCP(s) has a quasi-integral behaviour, and the 
benchmark (22) can be used to approximate (21): 
 

(22)   . )]1(/[)( Σ+= sTsksH PCP
 
For the CP (22) the use of PI controllers having the 
t.f. (2) or (23) used as basic continuous-time PI 
controllers in accordance with Section 2: 
 

(23)   iCcicC TkkssTksH /  ,/)1()( =+= , 
 
with the gain kc, tuned in terms of the Extended 
Symmetrical Optimum (ESO) method (Preitl and 
Precup, 1999), can ensure good control system (CS) 
performance: 
 

(24)   icCiPc TkkTTkTk =β=β= ΣΣ  , ),/(1 23 , 
 
where β represents a single design parameter. 
 
The tuning relations (24) were obtained by applying 
the optimization conditions (25) specific to the ESO 
method: 
 

(25)   2
231

2
120   , aaaaaa =β=β , 

 
to the closed-loop t.f. with respect to the reference 
input Hr(s) (it is considered the CS structure in Fig. 1, 
with the continuous-time PI controller instead of the 
PI-FC-OI): 
 

(26)   , 
.  ,  ,)           

/()()(

1100
3

3

2
21010

ababsa
sasaasbbsH r

==+

++++=

 
In the case of the controlled plant (19) and the PI 
controller with the t.f. (23), the coefficients of Hr(s) in 
(26) can be expressed in terms of (27): 
 

(27)   ΣΣ =+=== TTaTTaTkkakka PcPc 1312110  , , , . 
 
Applying the optimization conditions (25) and 
introducing the following notation specific to the CP: 
 

(28)   , 1  / 1<<= Σ TTmP
 
the tuning relations will obtain the form (29) in this 
case corresponding to an extension of the ESO 
method (Preitl, et al., 2002): 

(29)   
.)1/(]1)22([

,  ),/()1(
32

33

PPPm

miPPPc

mmmTT

TTmkTmk

++−+=

β=β+=

ΣΣ

ΣΣ  

 

The recommended values for β are again β ∈ (1, 20). 
The considered case study deals with a servo-system 
having the t.f. of the CP in its simplified form (21), 
with the parameters kP = 1, TΣ = 1 s and T1 = 10 s, that 
fulfil the condition (28) because mP = 0.1. 
 

The development of the PI-FC-OI is performed 
according to Section 2, but it starts with the 
development of the basic continuous-time PI 
controller in terms of this Section. 
 

Choosing β = 9 and applying (29), the PI controller 
parameters will have the values kc = 0.493, Ti = 
7.2256 s, kC = 3.5619. Setting Ts = 0.5 s, the 
parameters of the quasi-continuous digital PI 
controller result from (3): KP = 3.5273, KI = 0.2465, 
α = 0.0699. The choice of the PI-FC-OI parameter Be 
= 0.5 and (4) will lead to the other two PI-FC-OI 
parameters, B∆e = 0.0349 and B∆u = 0.1232. 
 

For the developed PI-FC-OI and the accepted CP, 
there will be applied as follows the steps 1 … 5 of the 
SAM according to the previous Section. 
 

 - Step 1: The useful elements of the transfer matrix 
H(s) are: 
 

(30)    

; 0979.00797.1s(s)
,0979.002767.00.0006s(s)

(s),(s)/)(
),0979.00797.1s(s(s)

,1959.01024.00145.0
0.0003s(s) (s),(s)/)(

2
21

2
21

212121

2
11

2

3
11111111

++=

++=

=
++=

+++

+==

sA
sB

ABsH
sA

ss
BABsH

 

 - Step 2: Due to the distribution of the membership 
functions (Fig. 3) and to the defuzzification method 
employed, the PI-FC-OI will have quasi-PI behaviour 
(that means it will be almost linear), and it is 
sufficient a relatively small of values of the 
describing function matrix, M = 10. In the case ω = 1 
rad/s, the elements of N(aq) are: 
 

(31)   

. 10,1 ,0

,}24370 ,23070
,24080 ,24370 ,2460 ,24680 ,23320

,23770 ,2320 ,3080{ },51 ,21

 ,11 ,1 ,80 ,60 ,50 ,40 ,20 ,10{(s)

1211

1211

===
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∈

qNN

..
.....

...NN..

.......

qq

qq

qa

 

 

It can be observed that some elements in (31) are 
equal one to another because the nonlinearity of the 
block B-FC is symmetrical (because of the 
membership functions shapes in Fig. 3 and of the 
decision table in Table 1). Other elements in (31) are 
zero to neglect the effect of the fictitious increment of 
control signal, ∆uf,k. 
 

- Step 3: The equation (19) does not have any 
solutions,  which  ensures  that  the  FCS  is  globally 
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stable in the case Be = 0.5. This is the reason why the 
steps 4 and 5 are no more necessary. 
 

The behaviour of the considered FCS is illustrated in 
Fig. 5. 

 
 

Fig. 5. Behaviour of fuzzy control system. 
 

The simulation conditions are characterized by the 
unit step modification of r followed by a −0.5 step 
modification of the disturbance input d3 (after 75 s), 
where the continuous line is used for y and the dotted 
line for u. This behaviour proves that the FCS is 
globally stable for the developed FC. 
 

5. CONCLUSIONS 
 

The proposed SAM represents a generalization to the 
MIMO case of other limit cycle criteria. It provides 
useful relations to the choice of the free parameter of 
the PI-FC-OI, Be. 
 

The SAM enables the redesign of the fuzzy 
controllers to avoid the existence of limit cycles, and 
it can be also considered as part of a development for 
PI fuzzy controllers. 
 

The application presented in the paper validates the 
proposed SAM and opens perspectives for its 
application to other structures of fuzzy controllers 
with dynamics. 
 

Although the plant has been assumed linear, it must 
be seen as a linearized one, corresponding to a more 
complex model of the CP. This can be considered 
because generally the goal of fuzzy control is not to 
control simple plants but to initially approach as a 
convenient and understandable nonlinear solution the 
control of a complex, uncertain or not well-defined 
plant. 
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