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Abstract: An adaptive gain, smooth sliding observer-controller are developed to control 
uncertain parameters, -degree of freedom rigid robotic manipulators. Furthermore, an 
on-line, closed loop identification scheme, for time-varying parameters is proposed in 
order to obtain useful information despite loads, external disturbances and faults 
detection. In order to reduce the chattering, a smooth switching function (parameterised 
tangent hyperbolic function) is used instead of pure relay one, into the observer and the 
controller. The gains of the switching functions are adaptively updated, depending on 
the estimation error and tracking error, respectively. By using adaptive gains, the 
transient and tracking responses are improved. Simulation results with a two degree of 
freedom (DOF) robot manipulator are presented to show the interest of the approach. 
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1. INTRODUCTION 
 
The state and parameter uncertainties in the model of 
the rigid robotic manipulators, considered as MIMO 
non-linear systems, as well as the deviations of the 
parameters from their nominal values and external 
disturbances lead to some problems in parameter 
identification and state estimation. All that makes 
absolutely necessary the design of the controller 
and/or the observer such as the closed loop 
robustness is achieved, stability with small tracking 
and estimation errors. It is well known that the 
robustness to model parameter uncertainties and 
external disturbances of the closed loop can be 
achieved with a variable structure controller. 
Maintaining the system on a sliding surface, weakens 
the influence of the uncertainties in the closed loop 
performances and quickly leads to an equilibrium 
point. In Filipescu (2003), an adaptive variable 
structure control with parameterized tangent 
hyperbolic as a switching function (denoted -tanh) 
with adaptive modification of its magnitude (denoted 
as -modification) is used, instead of a pure relay 
one with constant gain. In this paper the 
parameterized tangent hyperbolic function is used as 

switching function in order to alleviate, or/and 
eliminate chattering. Decreasing the parameter  in 
the switching function makes the gain around zero 
smaller and the un-modelled dynamics are excited in 
a smaller measure in high frequency. Also, the delay 
due to the control input calculus and the finite rate of 
switching can lead to chattering. Using the 

k

λ

k

λ -
modification into the gain of -tanh switching 
function, smoothes the response and increases the 
robustness to structural uncertainties. The adaptive 
gain is time depending, with the norm of the 
corresponding sliding surface, as input. Based on a 
time-varying parameters identification technique 
presented in Xu and Hashimoto (1993), Xu and 
Hashimoto (1996) and Xu, Pan and Lee (2003), we 
extend the scheme, by introducing, the observer, 
smooth switching function and adaptive gains. It is 
then applied to a general model of the robotic 
manipulator dynamics. The physical robot may have 
inside the joint, gears and clutches, through the 
torque supplied by the DC motor is transmitted in 
order to move the link. For this reason, the general 
model of the robotics manipulator is involved. We 
develop a variable structure observer-controller based 

k
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on the work of Sanchis and Nijmeijer (1998). 
Extensions of sliding control to MIMO non-linear 
uncertain systems have been made in Khalil (1996) 
and Utkin (1992). Several applications of the variable 
structure control to robotic manipulator controlling 
point out the robustness to uncertainties and external 
disturbances of the closed loop (Slotine & Sastry, 
1983; Canudas de Wit & Slotine1991). With the -
tanh switching function and the -modification in 
the observer-controller gains, the closed loop behaves 
like an approximate sliding mode, in the 
neighbourhood of the corresponding sliding surface. 

k
λ

 
The main contributions of this paper are concerned 
with: the adaptive smooth sliding observer-controller, 
the updating law of the variable structure gains, and 
finally the identification of the time-varying 
parameters and external disturbances. 

 
The paper is organized as follows. In the Section 2, a 
general model for the -degree of freedom robot 
manipulator and the sliding observer are presented. 
The smooth sliding observer is designed, the gain 
updating law is presented and a bound for the 
estimate error is computed. The design of the 
adaptive gain smooth sliding controller is performed 
in Section 3. An upper bound of the tracking error is 
provided, too. In Section 4, a stable identification 
scheme of time-varying parameters and external 
disturbances applied to a n -DOF robotic 
manipulator is presented. A 2-DOF vertical robotic 
manipulator, together with closed loop simulation 
results are presented in the Section5. Some 
conclusion remarks can be found in Section 6. 

n

 
2. ADAPTIVE GAIN SMOOTH SLIDING 

OBSERVER 
 
A very general model of the robotic manipulator can 
be expressed as a square non-linear MIMO model 
 

(1)  ( ) ( ) ( )[ ]
,,

,,,,,,

,,

1

22121
1

12

121

pn

nn

n

ℜ∈=

ℜ∈ℜ∈+=

ℜ∈=
−

pxy

uxupxxgpxxfpxhx

xxx

&

&

 
where only the vector  is available for 1x
measurement,  and  are control input and u y
measured output, respectively. The state space 

dimension is and n2 [ ] nTTT 2
21 ℜ∈= xxx  is the 

state vector. The unknown time-varying parameter 

vector  is supposed to be bounded. The pnℜ∈p
matrices f , and  may be partially unknown, with g h
some parameter uncertainties. If one assumes the 
partial knowledge of the model parameters, state 
estimates, time-varying parameters and disturbances, 
then one can define ,  ( )pxxff ˆ,ˆ,ˆ

21= ( )pxxgg ˆ,ˆ,ˆ 21=

and ( )pxh h ˆ,ˆ
1=  as the estimates of the functions f , 

g  and h . Moreover, if the matrices  and ( )pxxg ,, 21
( )pxg ˆ,ˆ 1 x ,ˆ 2  are nonsingular for all , then ppxx ˆ,,ˆ,

the system may be linearized via state feedback . 
 
Let choose as the observer sliding surface 

no 0xxS =−= 11ˆ . The observer can be written as 
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where [ ]n1111 diag γγ= LΓ ,  [ ]n2212 diag γγ= LΓ
with  and ,  being a 2,1,0 =>γ iij nj ,1= 0>ok

design parameter. The gains , [ ]n1111 diag θθ= LΘ
[ ]21212 diag θθ= LΘ , are time-varying and defined 

by ( λ -modification is included) 
 

(3)  ( ) ( ) [ ],ˆˆdiag 1111111111 nn xxxxtt −−−−= L& ρΘλΘ  

(4)  ( ) ( ) [ ],ˆˆdiag 1111112222 nn xxxxtt −−−−= L& ρΘλΘ  
 

where [ ]n1111 diag λλ= Lλ , , [ ]n2212 diag λλ= Lλ
[ ]n1111 diag ρρ= Lρ , , with [ ]n2212 diag ρρ= Lρ

i1λ , , , , i2λ i1ρ i2ρ ni ,,1 L=  positive constants. 
 

Remark 1. The dynamics (3) and (4) of the switching 
function force the matrices and  to the 1Θ 2Θ
negative values. They are almost zero when the 
observer is in the neighbourhood of sliding surface. 
In order to satisfy the attractiveness condition 

niSS oioi ,,1,0 K& =< , the gain  must be 1Θ
chosen such that 
 
(5) ( ) ( ) ( ) [ ) .0,,,1,ˆ 221 ∞∈∀=−>θ− tnitxtxt iii K  
 
By an appropriate choice of the matrices  and , 1λ 1ρ
the above condition at 0=t  remains satisfied for any 

0>t . 
If the active torque delivered by the joint DC-motor 
is considered as the control input, the model of the 
n -DOF robotic manipulator is 

 

(6) 
( ) ( ) ( )

,

,,,,

du

qGqFqqqCqqH

+=

+++ ppp mmm &&&&&
 

 
where [ ]Tnqq K1=q  is the vector of link 

positions, ( ) nxn
Pm ℜ∈,qH  is the positive definite 

inertia matrix, ( ) nxn
pm ℜ∈,, qqC &  is the Coriolis and 

centripetal force matrix,  is a positive semi-nxnℜ∈F
definite diagonal matrix with the viscous friction 
coefficients,  is the vector of driving torques. nℜ∈u
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Define the unknown time-varying parameter vector 

( ) ( ) ( )[ ] pnTT
p ttmt ℜ∈= dp , , where ( )tm p  is the 

payload and  is an additive input disturbance. Let ( )td

[ ]Tnxx 1111 K== xq [ ]Tnxx 2212 K& == xq,  
be the angular positions and velocity vectors, 
respectively. The measurements only concern the 
link positions . The robot state space 1xy =
representation can be written as 
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Taking into account the uncertainties, one can define: 
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as the estimates of function matrices: 
( )pm,1xH , ( )pm,, 21 xxC , ( )pm,1xG . Without loss 

of the generality, the friction is considered as a 
positive constant uncertain diagonal matrix F . ˆ
 
The following assumptions have to be considered 
Assumption 1. The reference signals ( )tyri  

ni ,,1 L=  are  functions; nC
Assumption 2. The matrices  and ( pm̂,ˆ

1xH )
( )pm,1xH  are non-singular for all ; pp mm ˆ,,1x

Assumptions 3. The time-varying vector ( )tp  is 
bounded all the time. 
 
With the above notations the model (6) can be 
rewritten as 
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The smooth sliding observer ( -tanh as switching k
function), with gains adaptively updated (λ -
modification is included, as in (3) and (4)), is given 
by the equations 
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The smooth switching function allows to consider 
that the approximate conditions:  are 0,0 ≈≈ oo SS &

satisfied during sliding.  can be ( ook Stanh )
expressed from the first equation of (12) and replaced 
in the second. Hence, the estimate error equation can 
be written as 
 

(13)   . 
[ ]

[ ]duGFxCxH

uGxFxCHxΘΘx

−−+++

−++−−=
−

−−

22
1

22
1

2
1

122 ˆˆˆˆˆˆˆ~~&

 
Above equation assures the stability of the observer 
and exponential convergence rate as how is proofed 
in Sanchis and Nijmeijer (1998). Let  be nxnℜ∈Q
the time varying positive definite matrix defined as 
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Choosing large eigenvalues of Q , the observation 
error can be globally ultimately bounded (Corollary 
5.3 from Khalil 1996). The matrix Q  determines the 
robustness of the observer to the parameter 
uncertainties. Taking  as a Lyapunov function 2V
candidate 
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the derivative can be expressed as 
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using the robot equations property 
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and the notations: 
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Let define the vector ( )221 ˆ,, xxxµµ =  as 
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and assume that µ  is linearly bounded by 2

~x : 
 

(24)   0,~
2 >∀γ+β≤ txµ . 

 
for some . The derivative of the Lyapunov 0, >γβ
function is bounded by 
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where  is a positive constant satisfying ε
 

(26)   γ−λ≤ε Qinf . 
 
If at , the switching gain satisfies (5), both 0=t 1Θ
gains ,  follow the adaptation laws (3) and (4), 1Θ 2Θ
respectively, and the vector  is bounded, then there µ
exists  such that the velocity estimation error 01 ≥t
satisfies the inequality 
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More, in finite time, the estimation error enters into 
the ball . That means ( r,0B )
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where the ball radius satisfies the inequality 
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Remark 2. The adaptation law (3), starting from 
nonzero initial condition, assures the non-singularity 
of the gain matrix  during sliding. Hence, the 1Θ
matrix  can be computed all the time using the Q
expression (14). The ultimate bound r  satisfying 
(29) is smaller if  is greater, i.e., if the initial Qminλ

value of  is chosen smaller than . 1Θ 2Θ
 

3. ADAPTIVE GAIN SMOOTH SLIDING 
CONTROLLER 

 
The controller is defined assuming only that the state 

1x is known and that the state  is provided by the 2x
observer. Corresponding to the n -dimensional 
control input, the controller sliding surface is 
 

(30)   ( ) ( ) ( ) ( ) ( )( )tttt rrc yxψyxxxS −+−= 1221 ˆˆ,ˆ & , 
 

where ( )try  represents the trajectory to be tracked. 
The matrix [ ]nψψ= K1diagψ , with positive 
constants, , determines the dynamics nii ,,1, L=ψ
during sliding. The sliding surface is attractive if the 
following condition holds 
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The time derivative of the sliding surface can be 
written as 
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If -tanh is used as switching function and the k
diagonal matrix [ ]nηη= L1diagη  is taken time 
depending 
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the controller which fulfils the sliding condition 

0ˆ =cS&  can be expressed as 
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where the matrices: , [ ]cncc λλ= L1diagλ

[ ]cncc ρρ= L1diagρ  are positive definite. The term 

cSψ ˆ−  is introduced in order to reduce the controller 
to classical feedback linearization one (Marino and 
Tomei 1995), if the switching term is set to zero. 
 
Despite the calculus of the control input for n -DOF 
robotic manipulator, to fulfil the attractiveness 
condition (31), it is necessary to express the 
derivative of the sliding surface (30) 
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Similarly as to the observer, using -tanh as  k
switching function and λ -modification into the gain, 
the sliding condition is fulfilled, if the control input is 
chosen as: 
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The controller switching gain  is adaptively ( )tη
updated as in (33). 
 
Remark 3.The observer error is nonzero if a -tanh k
function is used as a switching function in the 
observer equations. The controller sliding surface S  c

ˆ

can still be attractive by choosing sufficiently large 
initial values for the switching gains  and . 1Θ 2Θ
Moreover, the tracking error does not go to zero on 
controller sliding surface, because the smooth 
controller is used ( -tanh switching function). k
 
Remark 4. In order to reduce the influence of 
velocity estimation error in the control input, the 
relative weight of the states in the definition of 2x̂
the sliding surface should be decreased. This explains 
the introduction of the supplementary term  in cSψ ˆ−
the control input. The increasing of the parameter  ψ
is limited by the switching frequency and possible 
measurement noise. 
 
Using (13), the derivative of the sliding surface (30) 
can be expressed as 
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If the gain  fulfils the inequality ( )tη
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then the attractiveness condition is achieved. Because 

 and  are diagonal matrices, the inequality 
(38) can be written as 
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Remark 5. The initial value of the switching 
controller gain must be defined to guarantee the 
sliding condition after convergence of the observer, 
when the error in state estimates is bounded by (28). 
The term  maintains the sliding variable 
bounded during the observer transient. This leads to 

cSψ ˆ
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By an appropriate choice of and with respect 
to , ,  and , the above condition can be 
satisfied all the time. 

cλ cρ

1λ 2λ 1ρ 2ρ

 
Expressing the control input sliding condition as 
 

(41)   ( ) 212
~xyxψyx −=−+− rr& , 

 
where the true velocity state is introduced, taking into 
account (28), a bound of the tracking error can be 
obtained 
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Remark 6. The actual value of  depends on the 
convergence rate of the observer, and on the time 
defined by the gain matrixψ . The, observer and the 
controller, both of them into a smoothed form, can 
achieve high performance. Choosing the value of the 
constant  greater than , the smooth switching 
function of the observer is closer to a pure relay than 
the smooth switching function of the controller. 
Therefore, the observer converges faster than the 
controller with small estimate error. The state 
estimates could be chattering-free, independent by of 
the value of the gains  and . More, choosing 
the matrices  and  adaptively updated as in 
(3) and (4), the magnitudes of the switching function 
go to small values while link position errors go to 
small values. 

1t

ok ck

1Θ 2Θ

1Θ 2Θ

 
Remark 7. During sliding, the error is 
approximately zero. The derivate is not exactly zero, 
but it is a high frequency signal of average 
approximately zero, with an amplitude depending of 

. If the gain  goes to zero, the derivative of the 
velocity estimation error goes to zero or becomes 
very small. That means a reduced observation error 
even in the presence of parameter uncertainties. Also, 
the behaviour of the controller is similar with that of 
the full state measurements if its switching is based 
on a smooth variable. The smooth controller means a 
reduced or free chattering for the control input law 
and/or the output. 

.ˆ 11 xxS −=o

1Θ 1Θ

 
4. PARAMETER IDENTIFICATION BASED ON 
SMOOTH SLIDING OBSERVER-CONTROLLER 

 
The way followed for the time-varying parameter 
identification is quite different from that proposed by 
Xu, Pan and Lee (2003). Firstly, it is based on the 
state estimates and on the faster convergence of the 
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observer than the controller. Secondly, it is based on 
smooth sliding observer-controller, both of them 
having adaptive switching gain. Zero or small state 
estimate error leads to zero or small tracking error 
and small gains of the corresponding switching 
function. Consequently, during sliding, the weight of 
the switching term is negligible with respect to the 
compensation part. 

 
Define as the parameter vector estimate with . If p̂
the functions f ,  and h  are linear in thetime g
varying parameters, each term of the system (1) can 
be expressed as follows: 
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(45)   . ( ) ( )
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Define the followings function matrices and vectors: 
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(51)   , ( ) ( )⎥⎦
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ˆ,ˆ,ˆ
211

21
n

o

 
In the relationships (46),…,(52), ,  are 0Ĥ 0Ĝ

nnx22  matrices, , ,  are  matrices 1Φ̂ 2Φ̂ 3Φ̂ pnxn2

and , , ,  are  vectors. With the 0f̂ 01f̂ 0ĝ 0ĥ n2
above notations the robot model can by expressed 
compactly by: 
 

(53)   ( ) ( ) ( ) 021021010 ˆˆ,ˆ,ˆˆ,ˆˆ,ˆ upxxGxxfxpxH +=& , 
 

where [ ]TTT
n u0u ˆˆ 0 = . 

 
Assumption 4.  To each element  of ( ) pi nitp K1, =

the unknown time varying parameter vector ( )tp , 
there exist the values , a priori known, 

maxmin
, ii pp

such that 
 

(54)   . 
maxmin iii ppp ≤≤

 
Assumption 5. There exist bounding functions ( )1xα , 
( )1ˆ xα  such that 

 

(55)   

( ) ( ) ( )

( ) ( ) ( )

[ ] [ ) .0t,ppp̂,

,,ˆˆ,ˆˆ,ˆ

,,,

minmin
p

iii
n

n
111

1
01

1

11
1

01
1

∞∈∀∈∀ℜ∈∀

ℜ∈∀α≤≤

α≤≤

−−

−−

p

xxpxHpxh

xpxHpxh

 

 
Assumption 6. There exist  function matrices, nnx22
structured as follows: 
 

(56)    ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
=

2101
2101 ˆ,ˆ

ˆ,ˆ
xxg0

0I
xxG
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nxnn

 
of full rank, and 
 

(57)   , ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
=

pxxg0
00

pxxG
ˆ,ˆ,ˆ

ˆ,ˆ,ˆ
2102
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nxn

nxnnxn

 
with ( ) ( pxxpxx ˆˆ,ˆ,ˆ, 21022102 ijij gg = ) , such that 

(58)    
( )

( ) ( )[ ]pxxGIxxG

pxxG

ˆ,ˆ,ˆˆ,ˆ
ˆ,ˆ,ˆ

2102n22101

210

+=
. 

 
Assumption 7. There is a positive constant σ  such 
that 

(59)   nT ℜ∈∀σ≥− vvvghv ,ˆˆ 21 . 
 
Define the matrix 
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(60)   ( ) 3212121

ˆˆˆ,ˆ,,ˆ,ˆ ΦΦΦuxxxxΦ ++−=&&  
 
and the vector 
 

(61)   ( ) 0002121 ˆˆˆ,ˆ,,ˆ,ˆ gfhuxxxxω −−=&&  
 
of  and -dimension, respectively. Suppose pnxn2 n2

that  is a nonsingular matrix, then the ΦΦ ˆˆ T

parameter estimate p  can be computed as the ˆ
minimum residuum solution of the system 
 

(62)   ωpΦ )
=ˆˆ . 

 
In order ensure the boundedness of p , the following ˆ
scheme is used for computing the parameter estimate 
 

(63) ( )

( )
( ) ( )
[ ]
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⎪
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⎪
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i
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i
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i
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i
i
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i

i

ωΦΦΦ

ωΦΦΦωΦΦΦ

ωΦΦΦ

 

 
With the observer (2) and the control law (34), both 
of them having smooth switching term and gains 
adaptively updated, the neighborhood of the 
controller sliding surface (30) can be reached in finite 
time. 
 
The Lyapunov function candidate is chosen as 
 

(64)   2ˆˆ
c

T
cV SS= . 

 
The controller sliding surface (30) depends on the 
tracking error vector (reference tracking and velocity 
tracking) 

(65)   . ( ) ( )[ TT
r

T
rr 21 ˆˆ xyxyxxe −−=−= & ]

 
The derivative of the Lyapunov function can be 
expressed as 
 

(66)   ( )xy
e

S
Se

e
S

SSS &&&
&& ˆ

ˆ
ˆ

ˆ
ˆˆˆ −

∂
∂

=
∂
∂

== r
cT

c
c

cc
T
cV . 

 
Using (53), the above derivative function can be 
written as 
 

(67)   ( )uGHfHy
e

S
S ˆˆˆˆˆ

ˆ
ˆ

0
1

00
1

0
−− −−

∂
∂

= r
cT

cV && . 

 

The smooth sliding controller (32) can be expressed 
as the sum of two terms 
 

(68)   , sc uuu ˆˆˆ +=
 
where 
 

(69)   
( ) ( ) (

( )[ ]r2rc

121
1

21c

ˆˆ
ˆ,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ

yxψySψ

pxhpxxgpxxfu

&&& −−+−

+−= − )
 

 
is the compensation part, 
 

(70)   ( ) ( ) ( ) ( )ccs kt Sηpxhpxxgu ˆtanhˆ,ˆˆ,ˆ,ˆˆ 121
1−=  

 
being the switching part one. Using (58) and the 
block diagonal form of the matrices, the 
compensation part can be further expressed as 
 

(71)   
[ ][ ]

( )[ ]pΦΦxhfy

gIgu

ˆˆˆˆˆˆ
ˆˆˆ

2
1

2
2211r

1
02n01c

−−+−

+= −

&&&
, 

 

where , ( ) ( )⎥⎦
⎤

⎢⎣
⎡ ϕ= −

1
1212

2
1 ˆˆˆ

pnnxxxhΦ &

( ) ( )⎥⎦
⎤

⎢⎣
⎡ ϕ= −

2
1212

2
2 ˆ,ˆˆ

pnnxxxfΦ  are matrices pnxn

which hold the second block row of the matrices  1Φ̂

and , respectively. 2Φ̂
 
In order to re-write the variable structure term, the 

expression c

T
c S
e

S ˆ
ˆ

∂
∂

 can be replaced with smooth 

switching function ( )cck Ŝtanh  whilst the system 
evolution is in a neighbourhood of the sliding 
surface, the attractiveness condition is satisfied, the 
switching gain ( )tη  is closed to zero and the 
parameter  is sufficiently large. ck
 
Defining the vector 
 

(72)   [ ]Tnn pp
pppp

minmaxminmax 11 −−= Lπ  

 
and using the relationships (64), (55), and (59), there 
exists a positive constant ξ  such that 

(73)   

( ) ( ) ( )

( ) ( )
( )[ ] ( )

[ )∞∈∀
σ

ξ+α
≤

−

0t,
ˆktanhˆktanh

ˆktanhˆˆ
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T

cc
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121
1

SS

SπΦ

ηpxhpxxg

 

 
The variable structure part can be re-expressed as 
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(74)   
( ) ( )
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s k
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S

SS

SπΦ
u ˆtanh
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ˆ

σ
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With these components of the controller, taking into 
account the particular structure of the matrices and 
vectors (46)…(52), the derivative of the Lyapunov 
function may be expressed as 
 

(75)
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Defining the set
⎭
⎬
⎫

⎩
⎨
⎧

≤
c

c k
1Ŝ , we can say that there 

exists some  such that ,0≥T [ )Tt ,0∈∀ ( )
c

c k
t 1ˆ >S  

and ( )tcŜ  will be strictly decreasing until it reaches 

the set in finite time and remains inside thereafter 
(for ). Tt ≥
 
Particularizing the above relationships for -degree n
of freedom robot manipulator, considering the 
estimates of the velocities and the uncertainties in the 
parameters, the robot model (11) becomes 
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Define the  matrices and  vectors, nnx22 n2
respectively 
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This allows to re-write as 
 

(83)    uGf
x
x

H ˆˆˆ
ˆ

ˆ
00
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⎣
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or equivalently as 
 

(84)   . pΦgpΦfpΦh ˆˆˆˆˆˆˆˆˆ
3020110 +++=+

 
Remark 8. The smooth sliding controller allows the 
using of the compensation part as equivalent control 
input signal during sliding. The adaptive gain of the 
controller switching term goes to zero or becomes 
very small, depending on the error in the state 
estimate. Therefore, the influence of the noise 
induced by control input acquisition is very small in 
the parameter estimate. 
 
Remark 9. In closed loop, the robustness to 
uncertainties makes insensitive the stability to phase 
lag induced by the filters used to compute the 
derivatives of the state estimate. 
 
Remark 10. As emphasized in Xu, Pan and Lee 
(2003), the reference signal has to be chosen in order 
to avoid the singularity of the matrix . ΦΦ ˆˆ T

 
5. CLOSED LOOP SIMULATION 

 
A two degree of freedom vertical robot with two 
rigid revolute joints, two rigid links, a time varying 
payload ( )tm p and an additive disturbance ( )td  on 
the control input has been considered in order to test 
the smooth variable structure observer-controller 
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with time-varying parameter identification, 
developed in this paper. 
 
The vectors of position and velocities are 

[ ]Txx 12111 =x  and , [ ]Txx 22212 =x
respectively.  
 
 
 
The trajectory to be tracked is defined as 
 

 
(84)  ( ) ( )[ ]Tr tt 3.02sin7.03.0sin3.05.0 +−+−=y
 
The parameter vector to be identified is 
 

(85)   , ( ) [ ]Tt tet )3sin(7.013 5.0 +−+= −p
 
where  is the payload and ( ) t

p etm 5.03 −+=

( ) ( )ttd 3sin7.01+−=  is the additive disturbance. 
The corresponding robot model matrices and vectors 
are the following: 
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(94)   [ ]Tuu 210 00ˆ =g , . [ ]243
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x0Φ =

 
The initial conditions are: 
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T=== xxx ( ) [ ]T210ˆ 2 −=x , 
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The following constants are chosen as: 

[ ]11diag21 === cλλλ , , [ ]1010diag1 =Γ
[ ]50005000diag2 =Γ , [ ],11diag21 === cρρρ  
[ ]2020diag=ψ .  

 
In the figure 1, the closed loop simulated manipulator 
response is shown. Adaptive gains, smooth sliding 
observer-controller and time varying parameter have 
been introduced into the loop. Small parameter 
uncertainties (2%) have been considered. By 
choosing  greater than , a faster sliding 
observer convergence than that of the sliding 
controller has been obtained. The response is free of 
chattering, although limitations have been introduced 
into control input (

ok ck

1501 ≤u ; 752 ≤u ). Even if the 
system evolutes, during sliding, in a neighbourhood 
of the corresponding sliding surface, the output 
tracking is achieved. In the figure 2, the identification 
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of time-varying parameters  and ( )tm p ( )td  is 
shown. The reference signal was chosen in order to 
avoid the singularity of the matrix . In order to 
compute the derivatives of the state estimate the first 
order numerical difference has been used. The phase 
lag does not lead to instability and fluctuation in the 
parameter estimates. 

ΦΦ ˆˆ T

 

 
Fig. 1. Closed loop robot response, smooth sliding 

observer and controller, parameterized tangent 
hyperbolic switching function , . 10=ok 1=ck

 
Fig. 2. Closed loop, smooth sliding observer-

controller, on-line time varying parameters 
identification. 

 
6. CONCLUSIONS 

 
A robotic manipulator closed loop control with 
adaptive gains, smooth variable structure observer-
controller and time varying parameter identification 
has been designed and tested by simulation. The 
output tracking, the robustness to uncertainties and 

external disturbances are increased by the use of 
parameterised switching functions with gains  
adaptively updating. The parameterised -tanh 
switching function assures an alleviated or 
completely elimination of chattering. An appropriate 
choice of the parameters in the observer and 
controller switching functions, allows a faster 
convergence rate of the observer than that of the 
controller can be obtained. The gains adaptively 
updated lead the system to output tracking with 
smooth transient response. With some conditions on 
the robot model, reference input and a priori 
information, the identifier of time-varying parameters 
converges. The error in the parameter estimates 
depends on the error in the estimated state and on the 
tracking error. 

k
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