
THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

ELECTROTEHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recommended for publication by Cornelia NOVAC
54

A SURVEY OF TEXT CLUSTERING TECHNIQUES USED FOR WEB
MINING

Dan MUNTEANU, Severin BUMBARU

“Dunărea de Jos” University of Galatz
Faculty of Computer Science

Department of Computers and Applied Informatics
111 Domnească Street, 800201-Galatz, Romania

Phone/Fax: (+40) 236 460182; (+40) 236 461353
E-mail: dan.munteanu@ugal.ro severin.bumbaru@ugal.ro

Abstract: this paper contains an overview of basic formulations and approaches to
clustering. Then it presents two important clustering paradigms: a bottom-up
agglomerative technique, which collects similar documents into larger and larger
groups, and a top-down partitioning technique, which divides a corpus into topic-
oriented partitions.

Keywords: information retrieval, algorithms, machine learning, web mining, text
clustering

1. INTRODUCTION

The Web has become a vast storehouse of
knowledge, built in a decentralized yet
collaborative manner. It is a living, growing,
populist, and participatory medium of expression
with no central editorship. This has positive and
negative implications. On the positive side, there is
widespread participation in authoring content.
Compared to print or broadcast media, the ratio of
content creators to the audience is more equitable.
On the negative side, the heterogeneity and lack of
structure makes it hard to frame queries and satisfy
information needs.

Statistical dependencies between terms, Web pages,
and hyperlinks are also called patterns; the act of
searching for such patterns is called machine
learning, or data mining.

The data in web mining consists of text, hypertext
markup, hyperlinks, sites, and topic directories.
This distinguishes the area of Web mining as a new
field, although it also borrows liberally from
traditional data analysis.

The World Wide Web is the largest and most
widely known repository of hypertext. Hypertext
documents contain text and generally embed
hyperlinks to other documents distributed across
the Web. Today, the Web comprises billions of
documents, authored by millions of diverse people,
edited by no one in particular, and distributed over
millions of computers that are connected. Citation,
a form of hyperlinking, is as old as written
language itself. Dictionaries and encyclopedias can
be viewed as a self-contained network of textual
nodes joined by referential links. Words and
concepts are described by appealing to other words
and concepts.

The richness of Web content has also made it
progressively more difficult to leverage the value of
information. The new medium has no inherent
requirements of editorship and approval from
authority.

The Web is a set of documents, where each
document is a multiset (bag) of terms. Hypertext
data is semistructured or unstructured, because they
do not have a compact or precise description of data
items. Such a description is called a schema, which

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

is mandatory for relational databases. The second
major difference is that unstructured and
semistructured hypertext has a very large number of
attributes, if each lexical unit (word or token) is
considered as a potential attribute.

Organizing knowledge into ontologies is an ancient
art, descended from philosophy and epistemology.
An ontology defines a vocabulary, the entities
referred to by elements in the vocabulary, and
relations between the entities. The entities may be
fine-grained, as in WordNet, a lexical network for
English, or they may be relatively coarse-grained
topics, as in the Yahoo! topic directory.

Topic directories offer value in two forms. The
obvious contribution is the cataloging of Web
content, which makes it easier to search. The
second contribution is in the form of quality control
and tend to reflect the more authoritative and
popular sections of the Web.

Topic directories built with human effort (e.g.,
Yahoo! or the Open Directory) lead to a question:
Can they be constructed automatically out of a
corpus of Web pages, such as collected by a
crawler?

The practice of classifying objects according to
perceived similarities is the basis for much of
science (Jain and Dubes 1988). Organizing data
into sensible groupings is one of the most
fundamental modes of understanding and learning.
Cluster analysis is the formal study of algorithms
and methods for grouping, or classifying, objects.
An object is described either by a set of
measurements or by relationships between the
object and other objects. Cluster analysis does not
use category labels that tag objects with prior
identifiers. The absence of category labels
distinguishes cluster analysis from discriminant
analysis (and pattern recognition and decision
analysis). The objective of cluster analysis is
simply to find a convenient and valid organization
of the data, not to establish rules for separating
future data into categories. Clustering algorithms
are geared toward finding structure in the data.

A cluster is comprised of a number of similar
objects collected or grouped together. Everitt
documents some of the following definitions of a
cluster (Everitt, 1974):

1. “A cluster is a set of entities which are alike, and
entities from different clusters are not alike.”

2. “A cluster is an aggregation of points in the test
space such that the distance between any two points
in the cluster is less than the distance between any
point in the cluster and any point not in it.”

3. “Clusters may be described as connected regions
of a multi-dimensional space containing a relatively
high density of points, separated from other such
regions by a region containing a relatively low
density of points.”

Making sense of data is an ongoing task of
researchers and professionals in almost every
practical endeavor (Pedrycz, 2005). The age of
information technology, characterized by a vast
array of data, has enormously amplified this quest
and made it even more challenging. Data collection
anytime and everywhere has become the reality of
our lives. Understanding the data, revealing
underlying phenomena, and visualizing major
tendencies are major undertakings pursued in
intelligent data analysis, data mining, and system
modeling.

A clustering algorithm discovers groups in the set
of documents such that documents within a group
are more similar than documents across groups.

Clustering is a classic area of machine learning and
pattern recognition. Clustering and classification
are at two opposite extremes with regard to the
extent of human supervision they need. Real-life
applications are somewhere in between, because
unlabeled data is easy to collect but labeling data is
onerous.

Cluster analysis is a statistical technique used to
generate a category structure which fits a set of
observations (Frakes and Baeza-Yates, 1992). The
groups which are formed should have a high degree
of association between members of the same group
and a low degree between members of different
groups. While cluster analysis is sometimes
referred to as automatic classification, this is not
strictly accurate since the classes formed are not
known prior to processing, as classification implies,
but are defined by the items assigned to them.

Clustering is useful for taxonomy design and
similarity search. Topic taxonomies such as Yahoo!
and the Open Directory (dmoz.org) are constructed
manually, but this process can be greatly facilitated
by a preliminary clustering of large samples of Web
documents. Clustering can also assist fast similarity
search. Similarity, in a rather general way, is
fundamental to many search and mining operations
on hypertext and is central to most of this book.
The utility of clustering for text and hypertext
information retrieval lies in the so-called cluster
hypothesis: given a “suitable” clustering of a
collection, if the user is interested in document d,
he is likely to be interested in other members of the
cluster to which d belongs. The cluster hypothesis
(Rijsbergen, 1979) is not limited to documents
alone.

55

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

This article contains an overview of basic
formulations and approaches to clustering. Also it
presents two important clustering paradigms: a
bottom-up agglomerative technique, which collects
similar documents into larger and larger groups,
and a top-down partitioning technique, which
divides a corpus into topic-oriented partitions.
These are followed by a slew of clustering
techniques that can be broadly classified as
embeddings of the corpus in a low-dimensional
space so as to bring out the clustering present in the
data.

2. PROBLEM FORMULATION

It is given a collection of documents (in
general, entities to be clustered). Entities either may
be characterized by some internal property, such as
the vector-space model for documents, or they may
be characterized only externally, via a measure of
distance (dissimilarity)

D

),(21 ddδ or resemblance

(similarity)),(21 ddρ specified between any two
pairs of documents. For example the Euclidean
distance between length-normalized document
vectors for δ can be used and cosine similarity for
ρ (Chakrabarti, 2003).

One possible goal that can be set up for a clustering
algorithm is to partition the document collection
into subsets or clusters so as to
minimize the intracluster distance

or maximize the

intracluster resemblance ∑ ∑ .

If an internal representation of documents is
available, then it is also usual to specify a
representation of clusters with regard to that same
model. For example, if documents are represented
using the vector space model, a cluster of
documents may be represented by the centroid
(average) of the document vectors. When a cluster
representation is available, a modified goal could
be to partition into so as to

minimize

k kDDD ,,, 21 K

∑ ∑ ∈i Ddd i
dd

21 , 21),(δ

∈i Ddd i
dd

21 , 21),(ρ

D kDDD ,,, 21 K

∑ ∑ ∈i Dd i
i

Dd),(δ or maximize

∑ ∑ ∈i Dd i
i

Dd),(ρ , where iD is the vector-

space representation of cluster . i

One could think of assigning document to
cluster as setting a Boolean variable to 1.
This can be generalized to fuzzy or soft clustering
where is a real number between zero and one.

In such a scenario, one may wish to find so as

to minimize

d
i idz ,

idz ,

idz ,

∑ ∑ ∈i Dd iid Ddz),(, δ or

maximize ∑ ∑ ∈i Dd iid Ddz),(, ρ .

3. BOTTOM-UP AND TOP-DOWN
PARTITIONING TECHNIQUES

The heuristic is to start with all the documents and
successively combine them into groups within
which interdocument similarity is high, collapsing
down to as many groups as desired. This style is
called bottom-up, agglomerative, or hierarchical
agglomerative clustering (HAC) and is
characterized by the pseudocode:

1. let each document be in a singleton group

d
}{d

2. let G be the set of groups

3. while do 1|| >G

4. choose G∈ΔΓ, according to some
measure of similarity),(ΔΓs

5. remove Γ and Δ from G

6. let ΔΓ=Φ U

7. insert Φ into G

8. end while

Fig. 1. A dendrogram presents the progressive,
hierarchy-forming merging process pictorially.

Typically, the earlier mergers happen between
groups with a large similarity . This
value becomes lower and lower for later merges.

)(ΔΓUs

56

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

Algorithms differ as to how they compute the
figure of merit for merging and . One
commonly used measure is the self-similarity of

. The selfsimilarity of a group of documents
 is defined as the average pairwise similarity

between documents in

Γ Δ

ΔΓU
Φ

Φ

∑∑
Φ∈Φ∈ −ΦΦ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
=Φ

2121 ,
21

,
21),(

)1|(|||
2),(

2
||

1)(
dddd

ddsddss

where the TF-IDF cosine measure is commonly
used for interdocument similarity . Other
merger criteria exist. One may choose to merge that
pair of clusters , which maximizes

, ,

or

),(21 dds

),(ΔΓ
),(min 21, 21

ddsdd Δ∈Γ∈),(max 21, 21
ddsdd Δ∈Γ∈

∑ Δ∈Γ∈
ΔΓ

21 , 21)|||(|),(
dd

dds .

3.1. The k-Means Algorithm

Bottom-up clustering, used directly, takes quadratic
time and space and is not practical for large
document collections. If the user can preset a
(small) number k of desired clusters, a more
efficient top-down partitioning strategy may be
used.

The best-known member of this family of
algorithms is the k-means algorithm. Further, will
be discusses two forms of the k-means algorithm
here. One makes “hard” (0/1) assignments of
documents to clusters. The other makes “soft”
assignments, meaning documents belong to clusters
with a fractional score between 0 and 1.

3.2. k-means with “hard” assignment

In its common form, k-means uses internal
representations for both the objects being clustered
and the clusters themselves. For documents, the
vector-space representation is used, and the cluster
is represented as the centroid of the documents
belonging to that cluster.

The initial configuration is arbitrary (or chosen by a
heuristic external to the k-means algorithm),
consisting of a grouping of the documents into k
groups, and k corresponding vector-space centroids
computed accordingly. Thereafter, the algorithm
proceeds in alternating half-steps, as shown below

1. initialize cluster centroids to arbitrary
vectors

2. while further improvement is possible do

3. for each document d do

4. find the cluster c whose centroid is
most similar to d

5. assign d to this cluster c

6. end for

7. for each cluster c do

8. recompute the centroid of cluster c
based on documents assigned to it

9. end for

10. end while

The basic step in k-means is also called move-to-
nearest, for obvious reasons. A variety of criteria
may be used for terminating the loop. One may exit
when the assignment of documents to clusters
ceases to change (much), or when cluster centroids
move by negligible distances in successive
iterations.

3.3. k-means with “soft’ assignment

Rather than make any specific assignment of
documents to clusters, the “soft” variant of k-means
represents each cluster c using a vector cμ in term
space. Since there is no explicit assignment of
documents to clusters, cμ is not directly related to
documents — for example, it is not necessarily the
centroid of some documents.

The goal of “soft” k-means is to find a cμ for each
c so as to minimize the quantization error

2||min∑ −
d ccc d μμ .

A simple strategy to iteratively reduce the error is
to bring the mean vectors closer to the documents
that they are closest to. The documents are scan
repeatedly, and for each document d, a “correction”

cμΔ c is accumulated for that cμ that is closest to
d:

∑
⎩
⎨
⎧ −

=Δ
d

cc
c

d
otherwise 0

d closest to is if),(μμη
μ

After scanning once through all documents, all the
scμ are updated in a batch by setting all

ημμμ ⋅Δ+← ccc is called the learning rate. It
maintains some memory of the past and stabilizes
the system. Note that each d moves only one cμ in
each batch.

57

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

The contribution from d need not be limited to only
that cμ that is closest to it. The contribution can be
shared among many clusters, the portion for cluster
c being directly related to the current similarity
between cμ and d. For example, it can be soften to

)(
||1

||1
2

2

c
c

c d
d

d μ
μ

μημ
γ γ

−
−

−
=Δ

∑

or

)(
)||exp(

)||exp(
2

2

c
c

c d
d

d μ
μ

μημ
γ γ

−
−−

−−
=Δ

∑

Many other update rules, similar in spirit, are
possible.

4. LATENT SEMANTIC INDEXING (LSI)

Let the term-document matrix be A where the entry
A[t, d] may be a 0/1 value denoting the occurrence
or otherwise of term t in document d. More
commonly, documents are transformed into TFIDF
vectors and each column of A is a document vector.

In the vector-space model, it is allocated a distinct
orthogonal direction for each token. The obvious
intuition is that there is no need for so many (tens
of thousands) of orthogonal directions because
there are all sorts of latent relationships between the
corresponding tokens. Car and automobile are
likely to occur in similar documents, as are cows
and sheep. Thus, documents as points in this space
are not likely to nearly “use up” all possible
regions, but are likely to occupy semantically
meaningful subspaces of it. Another way of saying
this is that A has a much lower rank than

. One way to reveal the rank of A
is to compute its singular value decomposition
(SVD). Without going into the details of how the
SVD is computed, which is standard, the
decomposed form of A is

|}||,min{| TD

T
Dr

r

rTDT VUA ||

1

||||||

0

0

×××
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

σ

σ

L

MOM

L

where r is the rank of A, U and V are column-
orthonormal (, the identity
matrix), and the diagonal matrix in the middle
can be organized (by modifying U and) such
that

IVVUU TT ==
Σ

V
01 >≥≥ rσσ K .

The standard cosine measure of similarity between
documents can be applied to the A matrix: the
entries of may be interpreted as the
pairwise document similarities in vector space. The
situation is completely symmetric with regard to
terms, and can be regarded the entries of

 as the pairwise term, similarity based
on their co-occurrence in documents.

||||)(DD
T AA ×

||||)(TT
TAA ×

The tth row of A may therefore be regarded as a
-dimensional representation of term t, just as

the dth column of A is the -dimensional vector-
space representation of document d. Because A has
redundancy revealed by the SVD operation, a
“better” way to compute document-to-document
similarities can be used as | and

term-to-term similarities as . In
other words, the tth row of U is a refined
representation of term t, and the dth row of V is a
refined representation of document d. Both
representations are vectors in an r-dimensional
subspace, and it can be talked about the similarity
of a term with a document in this subspace. In
latent semantic indexing (LSI), the corpus is first
used to precompute the matrices U, , and V. A
query is regarded as a document. When a query “q”
is submitted, it is first projected to the r-
dimensional “LSI space” using the transformation

|| D
||T

|||
2)(DD

TVV ×Σ

||||
2)(TT

TUU ×Σ

Σ

∑−

× ×
=

1
||||rr T

T

Tr
qq U)

At this point q) becomes comparable with the r-
dimensional document representations in LSI
space. Now one can look for document vectors
close to the transformed query vector. In LSI
implementations, not all r singular values are
retained. A smaller number k, roughly 200 to 300,
of the top singular values are retained—that is, A is
approximated as

∑
≤≤

⋅⋅=
ki

T
iiik vuA

1

rr σ

where iur and ivr are the ith columns of U and V.

How good an approximation is ? The Frobenius
norm of A is given by

kA

∑=
dt

F dtAA
,

2],[||

It can be shown that

22
2

2
1

2|| rFA σσσ +++= K ,

58

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

and

22
1

2
1

22

)(
||||min rkFkFkBrank

AABA σσσ +++=−=− +=
K

That is, is the best rank-k approximation to A
under the Frobenius norm.

kA

The above results may explain why retrieval based
on LSI may be close to vector-space quality,
despite reduced space and perhaps query time
requirements (although the preprocessing involved
is quite time-consuming). Interestingly, in practice,
LSI does better, in terms of recall/precision, than
TFIDF retrieval. Heuristic explanations may be
sought in signal-processing practice, where SVD
has been used for decades, with the experience that
the dominating singular values capture the “signal”
in A, leaving the smaller singular values to account
for the “noise.” In IR terms, LSI maps synonymous
and related words to similar vectors, potentially
bridging the “syntax gap” in traditional IR and thus
improving recall.

LSI may also be able to exploit correlations
between terms to resolve polysemy in some
situations, improving precision as well.

LSI/SVD was view as a device for dimensionality
reduction, noise filtering, and ad hoc retrieval. It
can also be used for visualization (choose k = 2 or
3) or clustering, by using any of the other
algorithms after applying SVD.

5. CONCLUSIONS

This paper has presented an overview of basic
formulations and approaches to clustering. Then it
presented two important clustering paradigms: a
bottom-up agglomerative technique, which collects
similar documents into larger and larger groups,
and a top-down partitioning technique, which
divides a corpus into topic-oriented partitions. After
that a slew of clustering techniques were presented
that can be broadly classified as embeddings of the
corpus in a low-dimensional space so as to bring
out the clustering present in the data.

6. REFERENCES

Chakrabarti, S. (2003). Mining the Web:
Discovering Knowledge from Hypertext Data,
Morgan Kaufmann Publishers, San Francisco,
USA.

Everitt, B. S. (1978). Graphical Techniques for
Multivariate Data. ElsevierNorth-Holland Inc.,
New York, USA.

Frakes, W. B. and R. Baeza-Yates (1992)
Information Retrieval: Data Structures &
Algorithms. Prentice Hall PTR, New York,
USA

Jain, K.A. and R.C. Dubes (1988). Algorithms for
Clustering Data. Prentice Hall, Englewood
Cliffs, New Jersey.

Pedrycz, W. (2005). Knowledge-Based Clustering.
From Data to Information Granules. John
Wiley & Sons, Inc., Hoboken, New Jersey.

Rijsbergen, C. J. (1979) Information Retrieval,
Butterworths, London.

59

	1.
	6. REFERENCES

