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Abstract: A novel preprocessing method is proposed. It has a reduced complexity and 
therefore is aimed to be used in low power, VLSI implemented, speech recognizers. Our 
algorithm extracts a feature vector made from up to 3 feature vectors, each coming from 
a particular variable length speech sequence. The sequences are nested one into each 
other while their length is divided by 2 for each nesting operation. Each feature vector is 
computed as an average, min and max of all 13-dimensional Mel-cepstral coefficients 
obtained within a sound sequence. On a sound database with 10 speakers speaking 7 
different words the classification performance was found to be close and even better 
than the one obtained using traditional methods (HMMs). 
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1. INTRODUCTION 

There are various circumstances where a compact 
and low power device for isolated word recognition 
is required (e.g. input device for persons with motor 
disabilities, mobile devices such as PDAs or 
telephones, etc.). For the case of isolated word a 
sequence of variable length can be generated. 
Typically the isolated word speech recognition 
process is based on the HMM (Hidden Markov 
Model) method (Rabiner, 1989). The HMM method 
has the advantage that it does not depend on the 
specific word length and that it considers the change 
from successive feature vectors coming from the 
front-end processor, which encodes important 
information to recognize properly the words. But on 
the other hand the HMM method is computationally 
intensive. On the other hand, the use of neural 
networks or other machine-learning algorithms (e.g. 
support vector machines, or SVM (Vapnik, 1999)) 

may drastically simplify the hardware requirements 
but it requires a fixed length feature vector, which 
contradicts with the variable length nature of the 
isolated word signals. In the following we propose an 
easy to implement preprocessing method. Its 
performances in terms of percentage of correctly 
classified words appears to be superior of the method 
using discrete HMMs on the same database.  Section 
2 briefly presents the Mel-cepstral front end used to 
extract spectral information. The novel preprocessing 
method called a Nested Temporal Averaging (NTA) 
is introduced in Section 3, while results on a 
benchmark database are presented in Section 4. 
Conclusions are discussed in section 5. 

2. AUDIO SIGNAL PROCESSING 

The first step in all recognition or classification tasks 
is signal analysis, where the signal is processed in 
order to obtain the important characteristics, further 
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called features or parameters. By using only the 
important characteristics of the signal, the amount of 
data used for comparisons is greatly reduced and 
thus, less computation and less time is needed for 
comparisons.  

Our audio parameter extraction is based on 
perceptual linear predictive coding and perceptual 
cepstral coding, methods. In the next we will focus 
mostly on the cepstral coding method, since it is 
widely accepted as a robust voice preprocessing 
method. The block scheme of the processor is shown 
in the Fig 1.  

 

Fig.1. . Acoustic processor 

Few blocks are common for both linear prediction 
and cepstral coding. The first block in the scheme 
(frame blocking) is necessary because of the non-
stationary character of speech signals.  Its role is to 
extract short fragments of the speech signal, called 
frames, to be further processed.  During each frame, 
speech is approximated as a quasi-stationary random 
process.  

Then we put each frame through a Hamming 
window. We can compute at this time the energy of 
each frame and we can use the energy set of 
coefficients in the recognition process for more 
accuracy. 

Cepstral analysis is a very reliable method to audio 
parameterization and can be realized applying the 
blocked and windowed time discrete signal x(n) to 
the processing chain depicted in Figure 1. After the 
Discrete Fourier Transform (DFT), the modulus of 
the signal is calculated and the logarithm is taken, the 
result being proportional in fact to the power 
spectrum of the speech signal. Through IDFT, the 
real cepstrum is obtained, the “filter” characterization 
being comprised near of the cepstrum origin. The 
resampling of the real cepstrum leads to the cepstral 
coefficients, which, alone or in addition with the 
energy E, and/or the first and second order 
differences constitute a feature vector successfully 
applied in speech recognition. 

In order to obtain a parametric representation with 
the mel-cepstral coefficients and their first and 
second order variations the power spectrum is 
processed using a set of filters (denoted Sp.M.1 in 
Fig.1) with the transfer functions represented in the 
figure2. 

 

Fig.2. The transfer functions of Mel filters 

That filter bank is a model for the critical band 
perception of the human cochlea. The outputs of the 
filters (frequency domain) are calculated by the 
formula (1), where i is the index number of the Mel 
filter, S is the discrete FFT transform of the input 
signal s(t), k is the integer index of the input signal 
frequency space.  
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DCT is then applied to the resulted vector Y to 
compute the Mel-cepstral coefficients used as 
features for speech recognition. A more detailed 
description of the Mel-cepstral front end is beyond 
the focus of this paper. The interested reader may 
find more details in (Binu and Mathew, 2004). 

3. THE NESTED TEMPORAL AVERAGE  (NTA) 
ALGORITHM 

A sequence of voice samples representing a spoken 
word is transformed as above in a corresponding 
sequence of cepstral parameter vectors, each vector 
being generated from the samples within a window 
of the speech signal. The quantity of information 
represented by all these vectors is still too large to be 
directly applied to a classifier. On the other hand the 
number of parameters is variable, while the number 
of inputs to a classifier is usually fixed. Instead of 
employing a HMM model for the word recognition, 
we propose a simple and effective method for 
transforming a sequence of any length into a fixed 
sized feature vector containing the significant 
features of the uttered sound.  For reasons that will be 
clear later, we call this method a Nested Temporal 
Averaging (NTA) method.    

The variable length sequence { }Lj ccc ,..,..1 of voice 
parameter vectors corresponding to an isolated word 
is transformed by NTA into a fixed size feature 
vector with up to 6n components. The word length 
(number of samples) L is variable and it depends on 
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the particular sound (word) uttered. We assume that 
words are already segmented.   

Within this paper, each parameter vector is 
associated with the n=13 Mel-cepstral coefficients 
computed as described previously on a window of 
N=256 consecutive speech samples, i.e. 

jc

[ ]j
n

j
i

j
j ccc ,...,..1=c . The NTA method can be 

applied as well to other types of speech parameter 
vectors.    

The first step in our algorithm assumes scaling the 
values of the speech parameter components such that 

. [ ]1,1−∈j
ic

Scaling is achieved using the following simple rule: 
For each „channel“ i, and for the entire available 
dataset B one shall compute  and 
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The following reduced voice parameters can be now 
computed as follows:  
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This feature vector extracts the average features of 
the voice parameters composing the original 
sequence and it does not depend on L. 
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A similar set of reduced voice parameter vectors  
 can be obtained applying the above 

procedures to a reduced sequence 
321 f,ff ′′′,

{ }Lj ccc ′′′ ,..,..1  
nested within the original sequence. The reduced 
sequence contains half of the vectors from the 
original sequence as follows:   

⎣ 4/Ljj + ⎦=′ cc , when Lj ′= ,..,1  and ⎥⎦
⎥

⎢⎣
⎢=′

2
LL . 

Here ⎣ ⎦x  is the lowest integer close to x.  

 
The features computed on the first-order nested 
sequence were introduced to include that information 
which is of temporal nature and which is important 
for an accurate sound recognition.  Indeed it is easy 
to prove that if a random permutation is applied to 
the vectors from the initial sequence, the vectors 
from the reduced sequence are different and therefore 
will determine different values of the 321 f,ff ′′′,  
features.  

The above procedure can be recursively applied, 
producing another reduced (nested) sequence from 
the first-order nested one, and so on up to ( )L2log  
levels. However in practice it turned out that the first 
two levels (the original and the first-order reduced 
sequence) suffice and additional levels do not 
improve significantly the classification performance, 
while the computational complexity is increased. A 
graphic representation of the NTA algorithm is 
depicted in Fig.3. 

 

 

Fig.3. A graphic sketch of the NTA preprocessing 
algorithm 
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Note than all mathematical operators involved in the 
above algorithms are simple (addition and 
comparisons) and the computational complexity in 
computing the features is . For instance, 
using a typical value L=60 and n=13 in order to 
calculate a feature vector 

)( LnO ⋅

[ ]321321 ,,,,4 ffffffF ′′′=  
with 6 components, some 6*70*13=5460 arithmetic 
computations are necessary.  On the other hand, it is 
easy to demonstrate that the computational 
complexity of the SVM (Vapnik, 1999) used in a 
recognition phase (assuming that it has been trained 
offline previously) is where M  (the 
number of classes) is included in SV (i.e. the number 
of support vectors).  These values compare favorably 
with the complexity of the HMM algorithm under 
similar circumstances. 

)( SvnO ⋅

The minimal choice for a feature vector associated 
with a word is   (i.e. n components) while a 
maximal feature vector considered herein is 

 (i.e. 6n components). As 
seen in the following, the classification performances 
improve and reach a stationary value for the maximal 
feature vector.  

[ ]1fF =

[ 321321 ,,,,, ffffffF ′′′= ]

4. SVM CLASSIFIERS 

The feature vector determined at the output of the 
NTA preprocessing algorithm can be applied to a 
large variety of classifiers. NTA is capable to provide 
a fixed length, reasonable sized feature vector F 
associated with a spoken word. It can be easily 
classified with a variety of neural classifiers 

F

(Haykin, 
1999), many of them having convenient VLSI 
implementation. Our choice here was for the Support 
Vector Machine (Vapnik, 1999), a classifier deeply 
rooted in the statistical machine learning theory, 
proved so far to have best classification performances 
when compared with other neural classifiers.  In our 
simulations we use the multi-class SVM 
implementation available from (Junshui et al., 2003). 
For a detailed tutorial on SVM the reader is pointed 
to (Hearst et al., 1998).   

5. EXPERIMENTAL RESULTS 

We considered a database from (Audio-database, 
2001) reduced to M=9 classes (i.e. the utterances of 
the figures “two“, “three“, “ten“) uttered by 10 
speakers (3 female and 7 male), while each speaker 
had 7 different utterance for the same word. In order 
to evaluate the test (generalization) accuracy we have 
considered the most adverse circumstance where the 
training set comes from 5 speakers and the test set 
comes from the other 5 speakers. There are 315 
words in both the training and the test set. Several 
different choices for computing the feature vectors 
(according to the NTA algorithm presented above) 
were considered as follows:  

 
[ ]11 fF = ,  
[ ]321 ,,2 fffF = ,  

[ ]32321 ,,,,3 fffffF ′′= ,  

[ ]321321 ,,,,4 ffffffF ′′′= ,  

[ ]321 ,5 fffF ′′′= .  
 
The implementation of the SVM from (Junshui et al., 
2003) was used, and the synthetic results are 
presented in Table 1. A Gaussian (RBF) kernel was 
used and the optimal value of its parameter γ  is 
specified in the table.  In addition the number „sv“ of 
support vectors (giving an indication on the 
computational complexity of the SVM classifier) is 
also included in the table. 

Table 1 Percentage of incorrectly classified words 
(PCIW) and its dependence on the choice of the 

feature vector F: 

Feature vector: PIC
W 
(%) 

SV
s 

Optima
l γ  

[ ]11 fF =  33.65 591 2 

[ ]321 ,,2 fffF =  22.22 668 0.55 

[ ]32321 ,,,,3 fffffF ′′=  12.38 680 0.3 

[ ]321321 ,,,,4 ffffffF ′′′=
 

11.42 696 0.3 

 

In further experiments, in addition to the above 
features, we considered the word length L. The 
results are summarized in Table 2:  

Table  2: Percentage of incorrectly classified words 
(PCIW) and its dependence on the choice of the 

feature vector F (The word length was included in the 
feature vector): 

Feature vector PICW 
(%) 

SVs Optimal 
γ  

[ ]L,1 1fF =  26.98 620 3 

[ ]L,,,,,4 321321 ffffffF ′′′=  10.47 
(best)  

796 0.4 

[ ]L,,5 321 fffF ′′′=  13.01 991 0.9 

 

It follows from the above tables that the choice of 
the components of the word feature vector F is of 
great importance for the recognizers’ accuracy. A 
particularly significant feature is the word length L.  
The best recognition rate (10.47%) is obtained for 

[ ]L,,,,,4 321321 ffffffF ′′′= , while the 
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computational complexity (in terms of arithmetic 
operations) of the SVM in this case is 
70*796=55720. Note than , with a 
total of 40 scalar features, does not significantly 
worsen the result (now PICW=13%) while the 
computational load reduces almost twice, to only 
40*991=39640 operations.  Note than for an average 
word length of L=60, the computational complexity 
of the NTA preprocessing scheme is typically less 
than 10% of the computational complexity of the 
SVM, therefore the SVM dominates within the 
recognition block formed of NTA + SVM.  For 
comparison with standard approaches we employed a 
HMM model to do the classification task using the 
same dataset, resulting in a PCIW of 16.22% (i.e. 
worse than the 10.47% obtained with the 
NTA+SVM). In an attempt to further reduce the 
implementation complexity, several simpler neural 
networks were tried instead of the SVM. For instance 
a PCIW=24,76% is reached using an RBF neural 
network optimized for hardware implementation 
(Dogaru et al., 1996) which has a hardware 
complexity of M*11+79=99+79=178 much smaller 
than the complexity of the preprocessing scheme (in 
this case 79*60=4740). Using an Adaline 

[ ]L,,5 321 fffF ′′′=

(Haykin, 
1999), with a computational complexity of only 
M*79=711, the performance drops to PCIW=28.6%.  

 
6. CONCLUSION 

A major problem in building compact, VLSI 
integrated speech classifiers based on isolated word 
recognition is the computational complexity of the 
classifier, usually implemented as an HMM model. 
This paper proposes a simple temporal averaging 
scheme, which generates a fixed size feature vector 
(with a dimension ranging from 40 to 80) associated 
with the temporal sequence representing an entire 
spoken word. Our method has the advantage of a 
dramatic reduction of the implementation 
complexity.  As evaluated in Section 5, an average of 
50.000 arithmetic computations per word were 
needed by our NTA+SVM algorithm to process a 
word, while for comparison 418.000 arithmetic 
operations per recognized word were reported in 
(Yoshizawa et al., 2006)  for a VLSI-oriented 
recognizer using the HMM. Therefore our proposed 
recognition system has a lower complexity, of about 
10 times smaller than of a HMM-based machine. Still 
knowing that the NTA requires only 10% of the 
recognizer complexity, there is a lot of potential in 
reducing the recognizer complexity further more, e.g. 
by using a simpler front-end than the Mel-cepstral 
one, and replacing the SVM algorithm with a more 
compact (and less computationally expensive) neural 
network. This is the aim of  future research.  
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