
THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

A QUICK SURVEY OF TEXT CATEGORIZATION ALGORITHMS

Dan MUNTEANU

“Dunărea de Jos” University of Galatz
Faculty of Computer Science

Department of Computers and Applied Informatics
111 Domnească Street, 800201-Galatz, Romania

Phone/Fax: (+40) 236 460182; (+40) 236 461353
E-mail: dan.munteanu@ugal.ro

Abstract: this paper contains an overview of basic formulations and approaches to
text classification. This paper surveys the algorithms used in text categorization:
handcrafted rules, decision trees, decision rules, on-line learning, linear classifier,
Rocchio’s algorithm, k Nearest Neighbor (kNN), Support Vector Machines (SVM).

Keywords: information retrieval, algorithms, machine learning, text classification

1. INTRODUCTION

As the volume of information available on the
Internet and corporate intranets continues to
increase, there is a growing need for tools helping
people better find, filter, and manage these
resources. Text categorization, the assignment of
free text documents to one or more predefined
categories based on their content, is an important
component in many information management tasks;
real-time sorting of email or files into folder
hierarchies, topic identification to support topic
specific processing operations, structured search
and/or browsing, or finding documents that match
long-term standing interests or more dynamic task
based interests (Aas and Eikvil, 1999).

Organizing human knowledge into related areas is
nearly as old as human knowledge itself, as is
evident in writings from many ancient civilizations.
In modern times, the task of organizing knowledge
into systematic structures is studied by ontologists
and library scientists, resulting in such well-known
structures as the Dewey decimal system, the AMS
Mathematics Subject Classification, and the U.S.
Patent Office subject classification.

Subject-based organization routinely permeates our
personal lives as we organize books, CDs, videos,
and email (Chakrabarti, 2003).

In many contexts trained professionals are
employed to categorize new items. This process is
very time-consuming and costly, thus limiting its
applicability. Consequently there is an increasing
interest in developing technologies for automatic
text categorization.

A number of statistical classification and machine
learning techniques has been applied to text
categorization, including regression models, nearest
neighbor classifiers, decision trees, Bayesian
classifiers, Support Vector Machines, rule learning
algorithms, relevance feedback, voted
classification, and neural networks (Aas and Eikvil,
1999).

Some researchers make a distinction between text
classification and text categorization. ‘Text
categorization’ is sometimes taken to mean sorting
documents by content, while ‘text classification’ is
used as a broader term to include any kind of
assignment of documents to classes, not necessarily

This paper was recommended for publication by Severin Bumbaru
35

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

based on content, e.g., sorting by author, by
publisher, or by language (English, French,
German, etc.). However, these terms will be used
interchangeably in the present context, as will the
terms ‘class’ and ‘category’, with the assumption
that the meaning is about the assignment of labels
or index terms to documents based on their content.

The term ‘classifier’ will be used rather loosely to
denote any process (human or mechanical, or a
mixture of the two) which sorts documents with
respect to categories or subject matter labels, or
assigns one or more index terms or keywords to
them (Jackson and Moulinier, 2002).

2. PROBLEM FORMULATION

Document classification may be seen (Sebastiani,
2002) as the task of determining an assignment of a
value from to each entry of the decision

matrix: where g is a set of

predefine categories, and is a set
of documents to be classified.

}1,0{
},{ ,1 mccC K=

},{ ,1 nddD K=

nmjmmm

nijiii

nj

nj

aaac

aaac

aaac
ddd

,,1,

,,1,

,1,11,11

1

KK

KKKKKK

KK

KKKKKK

KK

KK

Fig. 2. Decision Matrix:

A value of 1 for is interpreted as a decision to

file under and a value of 0 is interpreted as

a decision not to file under .

jia ,

jd ic

jd ic

For understanding this task some observations can
be made:
• the categories are just symbolic labels. No

additional knowledge of their “meaning” is
available to help in the process of building the
classifier in particular, this means that the
“text” constituting the label (e.g. Sports in a
news classification task) cannot be used;

• the attribution of documents to categories
should, in general, be attributed on the basis of
the content of the documents, and not on the
basis of metadata (e.g. publication date,
document type, etc.) that may be available
from an external source. This means that the

notion of relevance of a document to a
category is inherently subjective.

Different constraints may be enforced on the
classification task, depending on the application:
1. }|1|1|1{ K≥≤ elements of C must be

assigned to each element of D. When exactly
one category is assigned to each document, this
is often referred to as the non-overlapping
categories case.

2. each element of C must be assigned to
}|1|1|1{ K≥≤ elements of D.

A number of distinguishable activities fall under the
general heading of classification, but here is a list
of the main types, with sample applications
attached for illustrative purposes. The aim here is
not to say how such problems should be solved, but
to identify the main issues.

– Routing. An online information provider sends
one or more articles from an incoming news feed to
a subscriber. This is typically done by having the
user write a standing query that is stored run against
the feed at regular intervals, e.g., once a day. This
can be viewed as a categorization task, to the extent
that documents are being classified into those
relevant to the query and those which are not
relevant. But a more interesting router would be
one that split a news feed into multiple topics for
further dissemination.

– Indexing. A digital library associates one or more
index terms from a controlled vocabulary with each
electronic document in its collection. Wholly
manual methods of classification are too onerous
for most online collections, and information
providers are faced with a large number of difficult
decisions to make regarding how to deploy
technology to help. Even if an extant library
classification scheme is adopted, such as MARC4
or the Library of Congress Online Catalog, there
remains the issue of how to provide human
classifiers with automatic assistance.

– Sorting. A knowledge management system
clusters an undifferentiated collection of memos or
email messages into a set of mutually exclusive
categories.

Since these materials are not going to be indexed or
published, a certain level of error can be tolerated.
It is obvious that some of these documents will be
easier to cluster than others. For example, some
may be extremely short, yielding few clues to their
content; some may be on one topic, while others
cover multiple topics. In any event, there will be
outliers, which will need to be dealt with by manual
cleanup, if a high degree of classification accuracy
is really necessary.

36

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

– Supplementation. A scientific publisher
associates incoming journal articles with one or
more sections of a digest publication where new
results should be cited. Even if authors have been
asked to supply keywords, matching those
keywords to the digest classification may be
nontrivial. However, there may be many clues to
where an article goes, over and above the actual
scientific content of the paper. For example, the
authors may each have previously published work
that has already been classified. Also, their paper
may cite works that have already been classified.
Leveraging this metadata will be the key to any
degree of automation applied to this process.

– Annotation. A legal publisher identifies the points
of law in a new court opinion, writes a summary for
each point, and classifies the summaries according
to a preexisting scheme. Given the volume of case
law, these tasks are most likely performed by teams
of people. The written summaries will not be very
long, and so any automatic means of classification
will not have much text to work with. However,
each summary comes from a larger text, which may
yield clues as to how the summaries should be
classified. It is possible that simply having program
route new summaries to the right classification
expert would improve the workflow (Jackson and
Moulinier, 2002).

2.1. Evaluating Text Classifiers

There are several criteria (Chakrabarti, 2003) to
evaluate classification systems:

- Accuracy, the ability to predict the correct class
labels most of the time. This is based on comparing
the classifier-assigned labels with human-assigned
labels.

- Speed and scalability for training and
applying/testing in batch mode.

- Simplicity, speed, and scalability for document
insertion, deletion, and modification, as well as
moving large sets of documents from one class to
another.

- Ease of diagnosis, interpretation of results, and
adding human judgment and feedback to improve
the classifier.

3. ALGORITHMS USED FOR TEXT
CATEGORIZATION

3.1. Handcrafted rule based methods

In the '80s (Sebastiani, 2002) the most popular
approach (at least in operational settings) for the
creation of automatic document classifiers

consisted in manually building, by means of
knowledge engineering techniques, an expert
system capable of taking text classification
decisions. Such an expert system would typically
consist of a set of manually defined logical rules,
one per category, of type

if <DNF formula> then <category>

A DNF (disjunctive normal form) formula is a
disjunction of conjunctive clauses; the document is
classified under <category> if it satisfies the
formula, if it satisfies at least one of the clauses.
The most famous example of this approach is the
Construe system built by Carnegie Group for the
Reuters news agency. A sample rule of the type
used in Construe is illustrated in figure 1.

Figure 1. Rule-based classifier for the Wheat
category; keywords are indicated in italic,
categories are indicated in caps.

However, it can readily be appreciated that the
handcrafting of such rule sets is a non-trivial
undertaking for any significant number of
categories. The Construe project ran for about 2
years, with 2.5 person-years going into rule
development for the 674 categories. The total effort
on the project prior to delivery to Reuters was about
6.5 person-years (Jackson and Moulinier, 2002).

The drawback of this approach is the knowledge
acquisition bottleneck well-known from the expert
systems literature. That is, the rules must be
manually defined by a knowledge engineer with the
aid of a domain expert (in this case, an expert in the
membership of documents in the chosen set of
categories): if the set of categories is updated, then
these two professionals must intervene again, and if
the classifier is ported to a completely different
domain (set of categories) a different domain expert
needs to intervene and the work has to be repeated
from scratch (Sebastiani, 2002).

3.2. Linear classifiers

Classifiers are modeled as separators in a metric
space. It assumes that documents can be sorted into
two mutually exclusive classes, so that a document
either belongs to a category, or it does not. The
classifier corresponds to a hyper plane (or a line)
separating the positive examples from the negative
examples. If the document falls on one side of the
line, it is deemed to belong to the category; if it
falls on the other side of the line, it does not.
Classification error occurs when a document ends
up on the wrong side of the line.

37

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

Linear separation in the document space

A linear separator can be represented by a vector of
weights in the same feature space as the documents.
The weights in the vector are learned using training
data. The general idea is to move the vector of
weights towards the positive examples, and away
from the negative examples.

The documents are represented as feature vectors.
Features are typically words from the collection of
documents. Some methods have used phrasal
structures, or sequence of words as features,
although this is less common. The components of a
document vector can be 0 or 1, to indicate presence
or absence, or they can be a numeric value
reflecting both the frequency of the feature in the
document and its frequency in the collection. The
familiar tf-idf weight is often used.

When a new document is classified, we look to see
how close this document is to the weight vector. If
the document is ‘close enough’, it is classified to
the category. The score of this new document is
evaluated by computing the dot product between
the vector of weights and the document.

Formally, if a document, D, is represented as the

document vector),...,,(21 ndddd =
r

 and the

vector of weights),...,,(21 nwwwC =
r

 represents
the classifier for class C, then the score of
document D for class C is computed by:

∑
=

⋅=⋅=
n

i
iiC dwCdDf

1
)(

rr

The computed score is a numeric value, rather than
being a binary ‘yes/no’ indicator of membership.
The most commonly used method to decide
whether document D belongs to class C given that
score is to set a threshold θ , Then if

θ≥)(DfC ,

we decide that the document is ‘close enough’ and
assign it to the class (Jackson and Moulinier, 2002).

Rocchio's algorithm

Rocchio is the classic method for document routing
or filtering in information retrieval. In this method,
a prototype vector is built for each class , and a
document vector D is classified by calculating the
distance between D and each of the prototype
vectors.

jc

The distance can be computed by for instance the
dot product or by using the Jaccard similarity
measure.

The prototype vector for class is computed as
the average vector over all training document
vectors that belong to class . This means that
learning is very fast for this method (Aas and
Eikvil, 1999).

jc

jc

The algorithm consists of applying the formula
shown below to the current weight vector, W, to
produces a new weight vector, W. Typically, the
first weight vector will have all zero components,
unless there is prior knowledge of the class, e.g., in
terms of keywords that have already been assigned.

The jth component of the new weight vector, ,

is:

jw

C

CD
j

C

CD
j

jj nn

d

n

d
ww

−
−+′=

∑∑
∉∈ γβα ,

where n is the number of training examples, C is
the set of positive examples (all training documents
assigned to the class) and nC is the number of
examples in C. dj is the weight of the jth feature in
document D. α, β and γ control the relative impact
of the original weight vector, the positive examples,
and the negative examples respectively.

Rocchio’s algorithm is often used as a baseline in
categorization experiments. One of its drawbacks is
that it is not robust when the number of negative
instances grows large.

3.3. On-line learning algorithms

On-line learning algorithms, encounter examples
singly and adapt weights incrementally, computing
small changes every time a labeled document is
presented. In general terms, on-line algorithms run
through the training examples one at a time,
updating a weight vector at each step. The weight
vector after processing the ith example is denoted
by),...,,(,2,1, niiii wwww =
r

. At each step, the new

vector, 1+iwr , is computed from the old weight

vector, iwr using training example with label yixr i.
For all methods, the updating rule aims at
promoting good features and demoting bad ones.

Once the linear classifier has been trained, we can
classify new documents using , the final
weight vector. Alternatively, if we keep all weight
vectors, we can use the average of these weight
vectors, which was reported to be a better choice:

1+nwr

38

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

∑
=+

=
n

i
iw

n
w

11
1 rr

When we want to train classifiers on-line, we need
to choose how and when weights are updated.

Widrow-Hoff algorithm

The Widrow-Hoff algorithm, also called Least
Mean Squared, updates weights by making a small
move in the direction of the gradient of the square
loss, 2)(iii yxw −⋅

rr
. It typically starts with all

weights initialized to 0, although other settings are

possible. It then uses the following updating rule:

jiiiijiji xyxwww ,,,1)(2 −⋅−=+
rrη

This rule is obtained by taking the derivative of the
loss function introduced above, η is the learning
rate, which controls how quickly the weight vector
is allowed to change, and how much effect each
training example has on the weight vector.

The weight-updating rule is applied to all features,
and to every example, whether the example is
misclassified by the current linear classifier or not.

On-line learning of linear classifiers produces
adaptive classifiers, classifiers that can learn on the
fly. These classifiers are very simple, but effective
and easy to train. Update rules are also simple and
efficient, although a complex document
representation may use a lot of space (Jackson and
Moulinier, 2002).

3.4. Decision tree classifiers

A decision tree text classifier is a tree in which
internal nodes are labeled by terms, branches
departing from them are labeled by tests on the
weight that the term has in the test document, and
leafs are labeled by categories. Such a classifier
categorizes a test document by recursively
testing for the weights that the terms labeling the
internal nodes have in vector , until a leaf node
is reached; the label of this node is then assigned to

jd

jd
r

jd . Most such classifiers use binary document
representations, and thus consist of binary trees. An
example decision tree is illustrated in Figure 2.

A possible method for learning a decision tree for
category consists in a “divide and conquer”
strategy of:

ic

- checking whether all the training examples have
the same label (either or ic ic);

- if not, selecting a term , partitioning Tr into
classes of documents that have the same value for

, and placing each such class in a separate
subtree. The process is recursively repeated on the
subtrees until each leaf of the tree so generated
contains training examples assigned to the same
category , which is then chosen as the label for

the leaf. The key step is the choice of the term
on which to operate the partition, a choice which is
generally made according to an information gain or
entropy criterion. However, such a fully grown tree
may be prone to overfitting, as some branches may
be too specific to the training data.

kt

kt

ic

kt

Figure 2. A decision tree. (edges are labeled by
terms and leaves are labeled by categories;
underlining denotes negation)

Most decision tree learning methods thus include a
method for growing the tree and one for pruning it,
for removing the overly specific branches.
Variations on this basic schema for DT learning
abound.

3.5. Decision rule classifiers

A classifier for category built by an inductive
rule learning method consists of a disjunctive
normal form rule, a conditional rule with a premise
in disjunctive normal form. The literals in the
premise denote the presence or absence of the
keyword in the test document , while the clause

head denotes the decision to classify under .
Decision rules are similar to decision trees in that
they can encode any Boolean function. However,
an advantage of decision rule learners is that they
tend to generate more compact classifiers than
decision tree learners.

ic

jd

jd ic

39

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

Rule learning methods usually attempt to select
from all the possible covering rules (rules that
correctly classify all the training examples) the
“best” one according to some minimality criterion.
While decision trees are typically built by a top-
down, “divide-and-conquer” strategy, decision
rules are often built in a bottom-up fashion.
Initially, every training example is viewed as a

clause
jd

in γηηη →,...,, 21 where nηηη ,...,, 21 are

the terms contained in and jd iγ equals or ic ic

according to whether is a positive or negative

example of . The learner applies then a process
of generalization in which the rule is simplified
through a series of modifications (removing
premises from clauses, or merging clauses) that
maximize its compactness while at the same time
not affecting the “covering” property of the
classifier. At the end of this process, a “pruning”
phase similar in spirit to that employed in decision
trees is applied, where the ability to correctly
classify all the training examples is traded for more
generality (Sebastiani, 2002).

jd

ic

3.6. Naïve Bayes classifier

The naive Bayes classifier is constructed by using
the training data to estimate the probability of each
class given the document feature values of a new
instance. We use Bayes theorem to estimate the
probabilities:

)(
)|()(

)|(
dP

cdPcP
dcP jj

j =

The denominator in the above equation does not
differ between categories and can be left out.
Moreover, the naive part of such a model is the
assumption of word independence, we assume that
the features are conditionally independent, given
the class variable.

This simplifies the computations yielding

∏
=

=
M

i
jijj cdPcPdcP

1

)|()()|(

An estimate for can be calculated
from the fraction of training documents that is
assigned to class :

)(ˆ
jcP)(jcP

jc

N
N

cCP j
j ==)(ˆ

Moreover, an estimate for
is given by:

)|(ˆ
ji cdP)|(ji cdP

∑ =
+

+
= M

k kj

ij
ji

NM

N
cdP

1

1
)|(ˆ

where is the number of times word i occurred

within documents from class in the training set.
ijN

jc

Despite the fact that the assumption of conditional
independence is generally not true for word
appearance in documents, the Naive Bayes
classifier is surprisingly effective (Aas and Eikvil,
1999).

3.7. k Nearest Neighbors (kNN)

k-NN is a memory based classifier that learns by
simply storing all the training instances. During
prediction, k-NN first measures the distances
between a new point x and all the training
instances, returning the set N(x,D, k) of the k points
that are closest to x. For example, if training
instances are represented by real-valued vectors x,
we could use Euclidean distance to measure the
distance between x and all other points in the
training data, i.e. 2|||| ixx − i = 1, . . . , n. After
calculating the distances, the algorithm predicts a
class label for x by a simple majority voting rule
using the labels in the elements of N (x, D, k),
breaking ties arbitrarily. In spite of its apparent
simplicity, k-NN is known to perform well in many
domains. In the case of text, majority voting can be
replaced by a smoother metric where, for each class
c, a scoring function

∑
∈′

′=
),,(

),cos()|(
kDxNx C

xxxcs

is computed through vector-space similarities
between the new documents and the subset of the k
neighbors that belong to class c, where

is the subset of
containing only points of class c. Despite the
simplicity of the method, the performance of k-NN
in text categorization is quite often satisfactory in
practice (Pierre, Paolo and Padhraic, 2003).

),,(kDxNC),,(kDxN

3.8. Support Vector Machines (SVM) classifiers

Support Vector Machines is a relatively new
learning approach introduced by Vapnik in 1995 for
solving two-class pattern recognition problems. It is
based on the Structural Risk Minimization principle
for which error-bound analysis has been
theoretically motivated. The method is defined over

40

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

a vector space where the problem is to find a
decision surface that “best” separates the data
points in two classes. In order to define the “best”
separation, we need to introduce the “margin”
between two classes. Figures 3 and 4 illustrate the
idea. For simplicity, we only show a case in a two-
dimensional space with linearly separable data
points, but the idea can be generalized to a high
dimensional space and to data points that are not
linearly separable. A decision surface in a linearly
separable space is a hyperplane.

Figure 3. A decision line (solid) with a smaller
margin which is the distance between the two
parallel dashed lines.

Figure 4. The decision line with the maximal
margin. The data points on the dashed lines are the
Support Vectors.

The solid lines in figures 3 and 4 show two possible
decision surfaces, each of which correctly separates
the two groups of data. The dashed lines parallel to
the solid ones show how much one can move the
decision surface without causing misclassification
of the data. The distance between each set of those
parallel lines is referred to as “the margin”. The
SVM problem is to find the decision surface that
maximizes the margin between the data points in a
training set.

More precisely, the decision surface by SVM for
linearly separable space is a hyperplane which can
be written as

0=−⋅ bxw rr

xr is an arbitrary data point (to be classified), and
the vector and the constant b are learned from a
training set of linearly separable data. Letting

denote the training set, and

 be the classification for (+1for being

a positive example and -1 for being a negative
example of the given class), the SVM problem is to
find

wr

)},{(ii xyD r
=

}1{±∈iy xr

wr and b that satisfies the following constraints

1for ,1 +=+≥−⋅ iybxw rr

1for ,1 −=−≤−⋅ iybxw rr

and that the vector 2-norm of is minimized. wr

The SVM problem can be solved using quadratic
programming techniques. The algorithms for
solving linearly separable cases can be extended for
solving linearly non-separable cases by either
introducing soft margin hyperplanes, or by mapping
the original data vectors to a higher dimensional
space where the new features contains interaction
terms of the original features, and the data points in
the new space become linearly separable.

An interesting property of SVM is that the decision
surface is determined only by the data points which
have exactly the distance from the
decision plane. Those points are called the support
vectors, which are the only effective elements in the
training set; if all other points were removed, the
algorithm will learn the same decision function.

||||/1 wr

This property makes SVM theoretically unique and
different from many other methods (Yang and Liu,
1999).

3.9. Feature Selection

Even methods like SVMs that are especially well
suited for dealing with high dimensional data (such
as vectorial representations of text) can suffer if
many terms are irrelevant for class discrimination.
Feature selection is a dimensionality reduction
technique that attempts to limit overfitting by
identifying irrelevant components of data points
and has been extensively studied in pattern
recognition and in machine learning.

Methods essentially fall into one of two categories:
filters and wrappers. Filters attempt to determine
which features are relevant before learning actually
takes place. Wrapper methods, on the other hand,
are based on estimates of the generalization error
computed by running a specific learning algorithm
and searching for relevant features by minimizing
the estimated error. Although wrapper methods are
in principle more powerful, in practice their usage
is often hindered by the computational cost.
Moreover, they can overfit the data if used in
conjunction with classifiers having high capacity
(Pierre, Paolo and Padhraic, 2003).

41

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

4. MEASURES OF PERFORMANCE

The performance of a hypothesis function h(·) with
respect to the true classification function f (·) can be
measured by comparing h(·) and f (·) on a set of
documents Dt whose class is known (test set). In the
case of two categories, the hypothesis can be
completely characterized by the confusion matrix
(figure 5):

Figure 5. Confusion matrix for two case scenarios.

where TP, TN, FP, and FN mean true positives, true
negatives, false positives, and false negatives,
respectively. In the case of balanced domains (i.e.
where the unconditional probabilities of the classes
are roughly the same) accuracy A is often used to
characterize performance. Accuracy is defined as

|| tD
TPTNA +

=

Classification error is simply E = 1−A. If the
domain is unbalanced, measures such as precision
and recall are more appropriate. Assuming (without
losing generality) that the number of positive
documents is much smaller than the number of
negative ones, precision is defined as

FPTP
TP
+

=π and recall is defined as

FNTP
TP
+

=ρ .

A complementary measure that is sometimes used

is specificity
FNTN

TN
+

=σ .

In the case of multiple categories we may define
precision and recall separately for each category c,
treating the remaining classes as a single negative
class. Interestingly, this approach also makes sense
in domains

where the same document may belong to more than
one category. In the case of multiple categories, a
single estimate for precision and a single estimate
for recall can be obtained by averaging results over
classes. Averages, however, can be obtained in two
ways. When microaveraging, correct classifications
are first summed individually:

c
K

c c

K

c c

FPTP

TP

+
=

∑
∑
=

=

1

1µπ ,
c

K

c c

K

c cc

FNTP

FPTP

+

+
=

∑
∑

=

=

1

1µρ

When macroaveraging, precision and recall are
averaged over categories:

 ∑
=

=
K

c
c

M

K 1

1 ππ , ∑
=

=
K

c
c

M

K 1

1 ρρ

Compared to microaverages, macroaverages tend to
assign a higher weight to classes having a smaller
number of documents.

5. CONCLUSIONS

This paper has presented an overview of basic
formulations and approaches to classification. It
presented the algorithms that can be used in text
classification: handcrafted rules, decision trees,
decision rules, on-line learning, linear classifier,
Rocchio algorithm, k Nearest Neighbor (kNN),
Support Vector Machines (SVM).

REFERENCES

Aas, K. and L. Eikvil (1999), Text categorisation:
A survey, Norwegian Computing Center.

Chakrabarti, S. (2003), Mining the Web:
Discovering Knowledge from Hypertext Data,
Morgan Kaufmann Publishers, San Francisco,
USA.

Jackson, P. and I. Moulinier (2002), Natural
Language Processing for Online Applications
Text Retrieval, Extraction and Categorization,
John Benjamins B.V., Amsterdam, The
Netherlands.

Pierre B., F. Paolo and S. Padhraic (2003),
Modeling the Internet and the Web:
Probabilistic Methods and Algorithms,
JohnWiley & Sons Ltd, West Sussex, England.

Sebastiani, F. (2002), A Tutorial on Automated
Text Categorisation, Istituto di Elaborazione
dell'Informazione, Consiglio Nazionale delle
Ricerche.

Yang, Y. and X. Liu (1999), A re-examination of
text categorization methods, 22nd Annual
International SIGIR, Berkley, pp. 42-49.

42

