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Abstract: Parameter identification scheme and discrete-time adaptive sliding-mode 
controller applied to Pioneer 3-DX wheeled mobile robot (WMR) are presented in this 
paper. The dynamical model for mobile robot with one pair of active wheels, time–
varying mass and moment of inertia have been used in sliding-mode control. Two closed-
loop, on-line parameter estimators have been used in order to achieve robustness against 
parameter uncertainties (robot mass and moment of inertia). Two sliding-mode adaptive 
controllers corresponding to angular and position motion have been designed. Closed-
loop circular trajectory tracking Pioneer 3-DX real-time control is presented. 
 
Keywords: Discrete-time Pioneer 3-DX model, sliding-mode adaptive control, on-
line parameter estimation. 

 
 
 
 

1. INTRODUCTION 
 
Different approaches have been proposed in the 
literature for output tracking of one pair of active 
wheels mobile robots (WMR), (Canudas de Wit and 
Sordalen, 1997, Canudas de Wit, Siciliano and 
Valavanis, 1998). The control problem of non-
holonomic systems when there are model 
uncertainties has been widely addressed. Relatively 
few results have been presented about the robustness 
of WMR control concerning model uncertainties and 
external disturbances. The structural (parameter) 
and/or un-structural uncertainties in the model of the 
MIMO non-linear systems and the difficulties in 
parameter identification make necessary the design of 
the controller such that the closed loop robustness is 
achieved. It is well known that the robustness to 
structural, un-structural uncertainties and external 
disturbances of the WMR closed loop can be 
achieved with a variable structure controller, 
(Aghilar, and all. 1997; Filipescu, and all 2005; Yu 
and Xu 2002). Maintaining the system on a sliding 
surface weakens the influence of the uncertainties in 
the closed loop and quickly leads to an equilibrium 
point. The main advantage of the discrete-time 
sliding mode control is with the direct and easy real-

time implementation. Since the sliding mode control 
is original from continuous time, it is more difficult 
to choose a synthesis in discrete-time. The discrete-
time sliding mode control, (Yu and Xu 2002, Leo and 
Orlando 1998) , is quite different of performing the 
control design in the continuous-time domain. 
Discrete-time sliding-mode controller design is 
usually based on an approximate sliding-mode 
system evolution due to the non unique attractiveness 
condition and approximate evolution on sliding 
surface, (Furuta 1990; Yu and Xu, 2002). . The 
robust trajectory tracking problem has been 
addressed in Yang and Kim, 1999, using a 
continuous time sliding-mode control. The 
performing control design, using the kinematical 
model of the vehicle does not explicitly take into 
account parameters variation (robot mass and 
moment of inertia) and external disturbances 
(frictions and viscous forces), (Fierro and Lewis, 
1997). The controller design using the WMR 
dynamical model, where uncertainties in the robot 
physical parameters can be explicitly taken into 
account, tends to interest actual researches on this 
field. In this paper, the trajectory tracking problem 
for Pioneer 3-DX one pair of active wheels type 
WMR, in the presence of uncertainties (time-varying 
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mass and moment of inertia), has been solved by 
discrete-time sliding-mode controllers based on the 
discrete-time WMR dynamical model. Two closed 
loop, on-line parameter estimators have been used 
against parameter uncertainties. 
 
The paper is organized as follows. In Section 2 the 
dynamical model of one pair of active wheels Pioneer 
3-DX mobile robot is presented. Also, the discrete-
time state space model, its uncertainties, non-
holonomic constraint and the output tracking errors 
of Pioneer 3-DX are presented. Section 3 describes 
on-line parameter estimators corresponding to 
angular and position motion. The sliding adaptive 
controllers, associated to angular and position 
motion, are designed in Section 4 and 5. Pioneer 3-
DX sliding-mode closed loop real-time results are 
presented in Section 6 and conclusions remarks in 
Section 7. 

 
 

2. PIONEER 3-DX DYNAMIC MODEL 
 

1) Assumption: The WMR motion is supposed to be 
pure rolling, without of any slipping. 
 
Figures 1 and 2 show Pioneer 3-DX with Pioneer 5-
DOF manipulator and the schema of a WMR, 
respectively. The vehicle dynamics is fully described 
by a three dimensional vector of generalized 
coordinates  constituted by the coordinates 

 of the midpoint between the two driving 
wheels, and by the orientation angle 

( )tq
( ) ( )(( tytx , ))

( )tΦ . The 
velocity constraint (non-holonomic constraint) of 
vehicle motion is . Define by 0cossin =Φ−Φ yx && rτ  
and lτ  the torques provided by DC motors to the 
right and left wheel, respectively. The vehicle is 
described by the following dynamical model where 
m, I, D, r are the robot mass, moment of inertia, 
distance between wheels and wheels radius, 
respectively 
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The real mass of the WMR is supposed to be time-
varying with bounded uncertainty with known 
nominal mass. Due to the time-varying mass, the 
moment of inertia becomes time-depending with 
bounded uncertainty. 
 
2) Assumption: Even if the moment of inertia is 
considered time-varying, the robotic mass is 
supposed to be uniformly distributed all the time. 

 
 

Fig. 1. Pioneer 3-DX with 5-DOF robotic 
manipulator 

 

 
 

Fig. 2. WMR configuration variables for angular and 
position motion. 

 
Let define two parameters corresponding to the 
angular and position motion, such as: 
( ) ( )( )rtIDt 2=α , ( ) ( )( )rtmt 1=π . The real values 

of the parameters are time-varying with upper 
bounded uncertainties 
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Let  be the state vector, whose elements are 6Rx∈
 

Φ===

Φ===
&&& 654

321

,,

,,

xyxxx

xyxxx
 (3) 

 
Define the control input corresponding to angular, 

lrAu ττ −=  and position motion, lrPu ττ += , 
respectively. The state space representation of WMR 
and the non-holonomic constraint will be discretized 
with the sampling period T, replacing the derivative 
by a finite difference and using a zero-order-hold for 
the control inputs, k being the kth time interval where 
the corresponding variable is evaluated ( ). Let kTt =
( ) 6Rke ∈  be, the vector of output 
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errors: ,  
is the trajectory to be tracked. 

( ) ( ) ( )kxkxke ref
iii −= ( ) 6,,1; L=ikxref

i
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( ) ( )( ) ( ) ( )( ) 0cossin 3534 =− kxkxkxkx  (5) 

 
 

3. ANGULAR AND POSITION MOTION 
ON-LINE PARAMETER ESTIMATION 

 
The closed loop structure, shown in figure 2, is 
proposed. For each robot motion, angular and 
position, respectively, an on-line parameter estimator 
and a sliding controller have been introduced. Due to 
the time-varying of the Pioneer 3-DX mass, the 
control input parameters ( )tα and ( )tπ  are on-line 
updated in order to be used in the corresponding 
sliding mode control input. The robustness against 
mass uncertainty will be assured. The maximum 
bounds of control input parameters corresponding to 
angular and linear motion will be used in the 
attractiveness condition of appropriate sliding 
surface. As will be shown in the next sections, the 
attractiveness condition of the corresponding sliding 
surface only on certain interval is satisfied. Outside 
of it, on-line parameter estimates will be used to 
compute the control input. Moreover, in discrete-
time, the sliding condition with some approximation 
is satisfied. When the system is inside of the sliding 
sector or in the neighborhood of sliding surface, the 
parameter updating law can provide convergent 
estimates. Let  and  be two sliding 
surfaces corresponding to the control input for 
angular and position motion, respectively. As 
parameter updating law, the recursive least squares 
method is used. The control input for angular motion 
has two terms: the first one, denoted compensation 

part , has to compensate the rotational 
dynamics; the second one, denoted sliding mode part, 

, corresponds to system evolution inside of 
sliding surface neighborhood. The whole control 
input for angular motion is 

( )kS A ( )kS P

)(ku comp
A

( )ku sm
A

 

( ) ( ) ( )kukuku sm
A

comp
AA +=  (6) 

The calculus and the steps for getting both 
components of the angular motion control input are 
given in Section 4. Expressing the estimated value 
for angular motion control input parameter, 

, the next sequence, 
corresponding to recursive least squares method, 

(Ljung, 1999; Stoica and Ahgren, 2002), can be used 
to provide an estimation of the uncertainty scalar 
term 

( ) ( )kk nom ααα ˆˆ ∆−=

( )kα∆  at the kth step 
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( ) ( ) ( ) ( ) ( )111 −−−−= ∆∆∆∆ kPkukLkPkP A αααα

 (8) 
( ) ( ) ( ) ( ) ( )111 −−−−= ∆∆∆∆ kPkukLkPkP A αααα

 (9) 
1) Remark: Since for each robot motion just one 
parameter is estimated, the gain  and the 
covariance

( )kL α∆

( )kP α∆  are scalars. 
 
The control input for position motion, , has 

only sliding-mode part, . For the 

corresponding parameter,

( )ku P

( ) ( )kuku sm
PP =

( ) ( )kk nom πππ ˆˆ ∆−= , 
similar updating law is used 
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( ) ( ) ( ) ( ) ( )111 −−−−= ∆∆∆∆ kPkukLkPkP πππππ (11) 
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where ( )kL π∆ , ( )kP π∆  have the same meaning as 

previously and ( )kSP
~

 will be defined later. 
 
2) Remark: For both parameter updating laws, (9) 
and (12), the expression in brackets is valid when the 
system evolutes in the neighborhood of the 
corresponding sliding surface. 

 
 

4. ANGULAR MOTION SLIDING-MODE 
ADAPTIVE CONTROL 

 
The following stable sliding surface has been chosen, 
in order to design the control input for angular 
motion 

( ) ( ) ( ) 01 =−+= kAkAkS A µ  (13) 
where 

( ) ( ) ( ) ( )
( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

−−
−=

1
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114
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3

kekx
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arctgkxkA

ref

ref

δ

δ
(14) 

with: ( )11−∈µ , ⎟
⎠
⎞

⎜
⎝
⎛∈

T
10, 21 δδ . Parameter µ  

and the position errors, , , establish the 
dynamics of sliding surface. The interval set of 

1e 2e

1δ and 2δ  assures the stability of position errors. If 
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the non-holonomic constraint corresponding to the 
reference trajectory 
 

( ) ( ) ( )( )kxkxarctgkx refrefref
453 =   (15) 

 
is taken into account, then the angular error ( )ke3  
vanish when ,  tend to zero. ( )ke1 ( )ke2
 
3) Remark: The sliding surface defined in (13) has 
been chosen such as whenever a sliding mode is 
achieved on it and ,  vanish, the 
orientation angle  tends to its reference value. 

( )ke1 ( )ke2
Φ

 
For computing the control input, the following 
attractiveness condition, (Furuta, 1990; Yu and Xu, 
2002), has been used: 

( ) ( ) ( )1
2
11 2 +∆−<+∆ kSkSkS AAA   (16) 

where 
( ) ( ) (kSkSkS AAA )−+=+∆ 11   (17) 

An approximate sliding-mode evolution can be 
assured on the surface (13). If for the compensation 
part of the control input the expression 
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is chosen, then, after replacing (6), (13) and (14) in 
(17), one obtains 
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With (19), (16) becomes 
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Introducing the upper bound of the angular motion 
parameter uncertainty, the above second degree 
inequality can be written in the compact form 
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If and ( ) 0>ku sm
A ( ) ( )kuTkS comp

AA
max2 α∆> , 

then the sliding-mode part of the control input can be 
expressed as 
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When ( ) 0ku sm
A < , the inequality (21) is satisfied for 
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comp
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3) Remark: Both expressions of the sliding-mode 
part, (22) and (23), can be written compactly 

( )

( ) ( )
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2

αα

αρ
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where ( )11−∈Aρ . 

When ( ) ( )kuTkS comp
AA

max2 α∆≤ , the 

attractiveness  condition (16) can not be satisfied. 
The sliding mode part of the control input still can be 
computed by using estimates of parameter α∆ . The 
recursive least square method used to compute α̂∆ , 
given by (7), (8) and (9), is convergent only when the 
system evolves in the neighborhood of sliding 
surface. Therefore, an approximate sliding mode 
condition is satisfied ( ) 01 2 ≈+ TkS A  
 

( )[ ] ( ) ( ) ( ) 0ˆˆ ≈∆+∆− kukkuk comp
A

sm
A

nom ααα  (25) 
This approximate is used in order to compute the 
control input for angular motion 
 

( ) ( ) ( ) ( )( )kkukku nomcomp
A
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A ααα ˆˆ ∆−∆−=  (26) 

 
4) Remark: Using (24), the updating law (9) can be 
rewritten as 
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5. POSITION MOTION SLIDING-MODE 
ADAPTIVE CONTROL 

 
The following sliding surface is proposed 
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Starting with the third equation of model (4), using a 
trigonometric equality and the non-holonomic 
constraint (5), the following equality holds 
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Moreover, introducing the expressions of the state 
variables, from state model (4), and using the 
constraint (5), the above equality becomes 

( )( ) ( )[ ] ( )[ ]( ) ( ) ( )

( ) ( )[ ] ( )[ ]( ) 212
5

2
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Let define 
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The sliding motion on the surface (27) concerns the 
reduced order system of the robotic model, without 
of 3rd and 6th equation. The same attractiveness 
condition, as in [6], for computing the position 
motion control input has been considered 
 

( ) ( ) ( )1
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( ) ( ) (kSkSkS PPP )−+=+∆ 11   (33) 
 
An approximate sliding mode evolution on the 
surface (27) can be assured. Consequently of sliding-
mode evolution on (13), the angular state ( )kx 3  
tends to hold the following expressions 
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Using (28), the following expression can be obtained 
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With (35) and (29), (25) and (32) become 
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Using (36), (37) and upper bound of position motion 
uncertainty, from (2), the second degree inequality 
can be written 
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If ( ) 0>ku sm

P  and ( ) ( )kSkS PP
~

> , then  the sliding 

control input for position motion is 
 

( )
( ) ( )

( )( )[ ] ( )max1
6cos

~

ππ
ρ

∆−

−
=

− nom

PP
PP

kTxT

kSkS
ku (40) 

 

where ( )10∈Pρ . When ( ) ( )kSkS PP
~

≤ , the 

attractiveness condition (31) can not be satisfied. The 
control input still can be computed using on-line 
estimates for π∆ . 
 
5) Remark: The recursive least square method used to 
compute π∆ ˆ , given by (10), (11) and (12), is 
convergent only when the system evolves in the 
neighborhood of sliding surface. Therefore, the 
approximate sliding mode condition is satisfied, 

( ) 01 ≈+kS P , i.e. 

( )( )[ ] ( )( ) ( ) ( ) 0~ˆcos 1
6 ≈+∆−− kSkukkTxT PP

nom ππ
 (41) 

From above, the control input can be expressed as 
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6) Remark: As result of (40), (12) can be rewritten as 
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When the system evolves in sliding-mode on the 
surface (27), can express the followings 

( ) ( ) ( )11144 −−= kekxkx ref δ   (44) 

( ) ( ) ( )11255 −−= kekxkx ref δ   (45) 
Therefore, output tracking error dynamics associated 
to the reduced order system can be expressed as: 
 

( ) ( ) ( 11 1111 − )−=+ kTekeke δ   (46) 
( ) ( ) ( 11 2222 − )−=+ kTekeke δ   (47) 

For ⎟
⎠
⎞

⎜
⎝
⎛∈

T
10, 21 δδ , the above dynamics errors are 

stable. 
 

6. PIONEER 3-DX REAL-TIME SLIDING-
MODE CLOSED LOOP CONTROL 

 
For testing the proposed discrete-time sliding-mode 
adaptive controller Pioneer 3-DX with on board PC 
and wireless adapter has been used in circular 
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trajectory tracking. The rugged P3-DX is 44cm x 
38cm x 22cm aluminum body with 16.5cm diametric 
drive wheels. The two motors use 38.3:1 gear ratios 
and contain 500-tick encoders. This differential drive 
platform is highly holonomic and can rotate in place 
moving both wheels, or it can swing around a 
stationery wheel in a circle of 32cm radius. A rear 
caster balances the robot. The following parameters 
of model (3) were used: m=10kg, D=50cm, I=0,0624 
kgm2, T=0.3s. The moment of inertia has been 
computed assuming the mass uniformly distributed. 
A linear-time varying mass additionally to the 
nominal one has been considered. More precisely, the 
robotic time-varying mass has been increased linearly 
from 12kg to 16kg. The circle trajectory tracking, 

shown in figures 3, was obtained for , 

. The following values have been 
chosen for the constants: 

4.0max =∆α
033.0max =∆π

001.0=µ , 
, 99.0AP =ρ=ρ 33.321 =δ=δ , 

. ( ) ( ) 100P0P == π∆α∆
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Fig.3. WMR closed loop response for circular 

reference and initial conditions x1(0)=33; 
x2(0)=33; x3(0)= /7; x4(0)=-0.5; x5(0)=0.2; 
x6(0)=0.1. 

π

 
 

7.        CONCLUSION 
 

Discrete-time, sliding-mode adaptive controllers and 
parameter estimators for trajectory tracking applied 
to control angular and position motion of Pioneer 3-
DX one pair of active wheels mobile robot, have 
presented in this paper. The time-varying mass and 
moment of inertia dynamical state space model have 
been undertaken in order to design the controllers. 
Even if as parameter uncertainties, only the robotic 
mass and moment of inertia have been considered, 
the proposed controllers assure closed loop 
robustness to a wide typology of parameter and 
model uncertainties and external disturbances. Two 
sliding-mode adaptive controllers have been 

designed, for angular and position motion, 
respectively. The robustness is guaranteed by sliding-
mode controllers and by on-line parameter 
estimators. Controllers parameters, on-line updated, 
assure an approximate sliding-mode evolution even if 
the attractiveness condition is not satisfied and 
contribute to an increased robustness. 
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