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Abstract: This paper presents analysis and design of a family of controllers based on 

numerical convex optimization for an aircraft pitch control system. A design method is 

proposed here to solve control system design problems in which a set of multiple closed 

loop performance specifications are simultaneously satisfied. The transfer matrix of the 

system is determined through the convex combination of the transfer matrices of the 

plant and the controllers. The present system with optimal convex controller has been 

tested for stability using Kharitonov’s Stability Criteria. The simulation deals here with 

the problem of pitch control system of a BRAVO fighter aircraft which results in higher 

order close loop transfer function. So the order of the higher order transfer function 

is reduced to minimize the complexity of the system. 

Keywords: convex optimization, Kharitonov’s stability, model reduction, pitch control 

system. 

 

1. INTRODUCTION 

Convex controller design is an approach used to 

solve close loop system design problems of robotics, 

mechatronics, high performance aircraft and flexible 

space structures
 
(Teresa, et al., 2006; Fu and Mills, 

2005; Tillerson, et al., 2002).Such problems typically 

require that a set of designed parameters and control 

gains be adjusted simultaneously so that a prescribed 

close loop system performance is achieved. This 

system design is termed as convex controller design 

in literature (Boyd, Barratt 1991; Barratt and Boyd 

1989). The close loop transfer matrices of the 

systems are combined in a convex combination to 

form a single transfer matrix, which satisfies that 

close loop performance specification. Boyd (Boyd, 

et. al., 1990) first pointed out that many commonly 

used performance specifications, such as  overshoot, 

control efforts, robust stability are convex with  

respect to the close loop transfer matrix. The fun-

damental fundamental problem of controller design 

for linear time invariant (LTI) systems can be solved 

with a restricted set of design specifications by 

combining recent theoretical results with 

numerical convex optimization techniques (Boyd 

and Vandenberghe, 2004). With the achievable 

specifications it is possible to find a controller 

which meets the specifications even though the 

controller may be complex and higher order. To 

get rid of the complexity of the higher order 
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controller the model is reduced to obtain a simpler 

controller using model reduction technique 

(Anderson, 1989). Some early ideas of model 

reduction were discussed by Moore (1981) and 

further refinements, extensions and applications have 

appeared in many subsequent literatures. 

2. CLASSICAL SYNTHETIC OPEN-LOOP 

DESIGN 

Classical synthetic open-loop design methods are 

extremely widely applied and are described in many 

current introductory control texts. The classical 

feedback control is shown in Fig. 1 with the plant P  

and a controller K. K should be designed such that the 

output(y) will satisfy all given closed-loop 

performances. 

 

Fig.1. Classical Feedback Control 

In classical open-loop methods emphasis is given on 

designing the loop gain, L = PK. The advantage of 

working with open loop system is that L is simply the 

product of P which is the fixed part of the system. 

The closed-loop transfer function from r to y, PK / 

(1 + PK) depends on K in a more complicated way 

than open loop. 

2.1. Parameter optimization methods 

Decomposition of the plant inputs and outputs are 

shown in Fig.2.  

 
Fig.2. Decomposition of the plant inputs and outputs 

The inputs to the model are divided into two vector 

signals. The actuator or control signal vector (u) 

consists of those inputs to the model that can be 

manipulated by the controller. Other input signals to 

the model will be lumped into vector signal (w) 

called the exogenous input. The sensor or measured 

signal vector( y) will consist of those output signals 

that are accessible to controller. The output signals 

from the model will be lumped into a vector signal 

(z) called the regulated variables. 

2.2.  Algebraic formulation of the   decomposed plant 

The plant as shown in the Fig. 2 can be described 

by the set of transfer functions from each of its 

inputs (the components of the vectors w and u) to 

each of its outputs (the components of z and y). The 

plant transfer matrix P is presented into a matrix 

form 

(1) 
Pzw Pzu

P
Pyw Pyu

 
=  
 

    

where,   Pzw ,  Pzu Pyw and  Pyu represents the 

transfer matrix from w to z., from u to z,w to y and  u 

to y respectively. The closed-loop transfer matrix 

from w to z which is denoted as (Boyd, et al., 1990) 

(2) 1(1 )zw zu yu ywH P P P K P−
= + −   

where K is the controller transfer matrix. 

 

Fig.3. Decomposition of Plant 

The close loop matrix H   from w to z is obtained from 

equation 2 is 

(3) 
0 0 0 0

0 0 0

/(1 ) /(1 )

/(1 ) /(1 )

zw zu

yw yu

P PK PK PK

PK PK K P K

P P
H

P P

  − − 
=   

− −    
=     

3. DESIGN OF CLOSED-LOOP CONVEX 

CONTROLLERS 

Let K and K  are two controllers each stabilizes P 

and yield closed-loop transfer matrices H and 

H respectively, then for each Rλ ∈  there is some 

controller Kλ  that stabilizes P and yields closed-loop 

transfer matrix as (Boyd. et al. 1990) 

1( ) ( )K A B C Dλ λ
−

= + +    

where 
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(4) 

1

1 1

( )

( ) ( )

yu yu

yu yu yu yu

A I K I P K P

B K I P K P K I P K P

−

− −

= + −

= − − −

1

1 1

( )

( ) ( )

yu

yu yu

C K I P K

D K I P K K I P K

−

− −

= −

= − − −

  

Here λ  is defined as the coefficient of affine 

criterion of convexity. An infinite number of such 

stabilizing controllers may be obtained by varying a 

single parameter λ  between 0 and 1. Out of these 

infinite combinations, to select the optimal convex 

controller we impose certain design specifications are 

imposed.  

4. 4. DESIGN OF CONVEX CONTROLLER FOR 

AN ARBITRARY PLANT 

The unity feed back control system with 0P  as  plant 

TF and K as controller TF is shown in Fig. 4 

below.Here ‘w’ is the input,’z1’ and ‘z2’ are outputs 

of the system. 

 

Fig.4. Block Diagram of the Control System 

Let  0 ( )P s  be an arbitrary first order plant denoted 

as,  0
1

( )
1

P s
s

=
+

. 

Let ( )K s  and ˆ ( )K s  are two arbitrary PI 

(Proportional Integral) controllers which stabilizes 

the plant Po  

2.0( ) 3.0
s

K s = + , 40ˆ ( ) 2
s

K s = +  

The transfer matrix from   ‘w’   to ‘z1’ with K, 

0
1

0

( ) ( )
( )

1 ( ) ( )

P s K s
H s

P s K s
=

+
=

2 

s + 2

s + 2 s + 2
 

The transfer matrix from   ‘w’ to ‘z2‘, with K , H2(s) 

=
( )

1 ( ) ( )

K s

P s K s+
= 

2

2 

s +3s + 2

s + 2 s + 2
 

Now the total transfer matrix H(s)   can be   shown 

below as 

(5) 
2 

1

2
2

2 

s + 2

( ) s + 2 s + 2
( )

( ) s +3s + 2

s + 2 s + 2

H s
H s

H s

 
 

   = =    
 
 

   

The transfer matrix from   ‘w’   to ‘z1’   with   K̂ , 

0
1

0

ˆ ( )
1

P K
H s

P K
=

+
=

2 

2s + 10

s + 3 s + 10
 

The transfer matrix from   ‘w’ to ‘z2‘,   with K̂  , 

2
ˆ ( )

1

K
H s

PK
=

+
=

2

2 

2s +12s + 10

s + 3 s + 10
 

Now the total transfer matrix ˆ ( )H s    is shown below 

as 

(6) 
2 

1

2
2

2 

2s + 10

ˆ ( ) s + 3 s + 10ˆ ( )
ˆ 2s +12s +10( )

s + 3 s + 10

H s
H s

H s

 
  
 = = 
     
 

  

The step responses  1 ( )z w t  and 2 ( )z w t  with 

controllers   K and K̂  respectively are plotted in the 

fig. 5 and fig. 6 below show that both the outputs  z1 

and z2 are stable with above said controllers. The 

solid line shows the response with controller K and 

dotted line with K̂ . 
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Fig.5. Step Response of  z1w(t) with K and K̂ . 
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Fig.6. Step Response of  z2w(t) with K and K̂ . 
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Now the close loop transfer matrix with introduction 

of optimizing parameter λ  can be expressed as the 

linear combination of ( ) H s  and Ĥ (s) as below 

(7) ˆ( )  ( ) (1 ) ( )H s H s H sλ λλ = + −  

(8) 
2 2 

2 2

2 2 

s + 2 2s + 10

s + 2 s + 2 s + 3 s + 10
( ) (1 )

s +3s + 2 2s +12s +10

s + 2 s + 2 s + 3 s + 10

H sλ λ λ

   
   
   = + −
   
   
   

 

The values of the parameter λ  taken here 

are [ 0.3,0,0.5,1.0,1.3]− . The optimum value  of λ  is 

selected where Mean Square value of Error(MSE) is 

minimum .The MSE is found  out by calculating the  

norm of the error for each value of the λ .The 

optimum value found here is 0.5. The closed loop 

performance from w to z1 generated by K and K̂  is 

plotted for five members of the one parameter family  

λ  in fig. 7 below. The corresponding response from 

w to z2 is plotted in Fig. 8 shown below 
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Fig.7. Step Response of  ( )H sλ  from ‘w’   to ‘z1’  

for various values of λ  
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Fig.8. Step Response of  ( )H sλ  from ‘w’   to ‘z2’  

for various values of λ  

 

Then the transfer matrix for optimum value of λ =0.5 

is obtained from equation 8  

(9) 

3 2

4 3 2

0.5 4 3 2

4 3 2

2.5   29.5   145   80

  7   54   166   80
( )

2.5   32   174.5   225   80

  7   54  166   80

 

s s s

s s s s
H s

s s s s

s s s s

 + + +
 

+ + + + 
=
 

+ + + + 
 + + + + 

   

The close loop Transfer matrix, H   of the control 

system shown in figure 4 is, 

(10)  0

01

P
H

P K
=

+
 

The optimum controller transfer function 0.5 ( )K s  is 

now obtained from equation 9 and equation.10. 

(11) 
3 2

0.5 3 2

2.5   29.5   145   80
( )

  3.5   21 

s s s
K s

s s s

+ + +
=

+ +

 

It is found in equation 11 that the value of 0.5 ( )K s  is 

neither a PI controller nor the average of two PI 

controllers though it is obtained from K and K̂ . 

Rather it is a modified optimum controller which 

stabilizes the close loop performance. 

5.  DESIGN OF CONVEX PITCH CONTROLLER 

The purpose of this example is to design a convex 

controller for a pitch control system of  BRAVO 

fighter aircraft shown in Fig. 9 to obtain a regulated 

pitch angle θ  with following performance criteria: 

Steady state error  ≤  0.001, Phase margin  ≥  45
0
 

and Gain margin ≥  3 dB 

As shown in the Fig. 9 below refθ is the reference 

pitch angle, Eδ  is the elevator deflection angle and 

θ is actual pitch angle of the aircraft 

 

Fig.9. Block Diagram of Pitch Control System 

The plant 0 ( )P s =
( )

( )E

s

s

θ

δ
 is the transfer function 

obtained from flight condition-3 (Maclean, 1990).  

(12) 0 3 2

(20.67   12.84)
( )

  1.822   28.54 

s
P s

s s s

+
=

+ +
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 Let the controller K and K̂  be two PID 

(Proportional-Integral-Derivative) controllers which 

stabilize the plant 0 ( )P s . 

General Form of the transfer function of a PID 

controller  is expressed as follows 

(13) 
0

( )
( )  ( ) ( )

t

c p I d

de t
g t K e t K e t dt K

dt
= + +∫

( ) [  ]I
p d

K
Gc s K K s

s
= + +  

  where ,p IK K and  dK are  Proportional, Integral 

and Derivative  gains.     

The PID controllers, K(s) and ˆ ( )K s  which stabilizes 

the plant are found out as 

(14)   
2.312

( ) [1.36 0.2 ]K s s
s

= + + , 

7.938ˆ ( ) [2.52 0.2 ]K s s
s

= + +  

The close loop transfer functions with K(s) and 

ˆ ( )K s , i.e. are H(s) ˆ ( )H s  are denoted as  

(15) H(s)= 0

0

( ) ( )

1 ( ) ( )

P s K s

P s K s+
, ˆ ( )H s = 0

0

ˆ( ) ( )

ˆ1 ( ) ( )

P s K s

P s K s+
  

From equation 15,  ( )H s  is obtained as 

(16) 
3 2

4 3 2

4.134 s  + 30.68 s  + 65.25 s + 29.69
( )

s  + 5.956 s  + 59.22 s  + 65.25 s + 29.69
H s =  

Similarly from equation 16  ˆ ( )H s  is obtained as, 

(17) 
3 2 

4 3 2

4.134 s  + 54.76 s + 196.5 s + 101.9
  
s  + 5.956 s  +83.3 s  + 196.5 s + 101.9

 

The step responses of  ( )H s  and ˆ ( )H s  are plotted 

below in the fig. 10 show that the output ( )tθ   is 

stable with controllers K and K̂ . The solid line shows 

the response with controller K and dotted line 

with K̂ . 
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Fig.10. Step Response with controllers ˆ and K K  

With introduction of optimizing parameter 

λ , ( )H sλ  is expressed as the linear combination of 

( ) H s  and ˆ ( ) H s  as shown below 

(18) ˆ( )  ( ) (1 ) ( )H s H s H sλ λλ = + −

3 2

4 3 2

3 2 

4 3 2

4.134 s  + 30.68 s  + 65.25 s + 29.69
( )  

s  + 5.956 s  + 59.22 s  + 65.25 s + 29.69

4.134 s  + 54.76 s + 196.5 s + 101.9
                                  (1 )   

s  + 5.956 s  +83.3 s  + 

H sλ λ

λ

 
= + 
  

−  
196.5 s + 101.9

 
 
  

 

The values of λ  taken here are 

[-0.5,-0.3,0.25,1.0,1.5] .The optimum value of λ  is 

selected where MSE minimum. MSE is found   out as 

done in the previous example and the values are 

listed in the tabular form for respective value λ  

given  below. 

λ  
-0.5 -0.3 0.25 1.0 1.5 

MSE 0.0102 0.0098 0.0096 0.0114 0.0135 

For λ =0.25 MSE is minimum .So λ =0.25 is 

considered as the optimum value of  ( )optλ λ . 

Substituting the optλ  in equation 18 the optimum 

close loop transfer function 0.25 ( )H s  is found out. 

(19) 
7 6 5 4 3 2

8 7 6 5 4 3 2
     

 4.134 s  + 73.36 s  + 723.7 s  + 4535 s  + 14970 s  + 19970 s + 12480 s + 3026

s  +11.91 s  + 178 s  + 1111 s  +6624 s  + 17860 s  + 21330 s  + 12480 s + 3026    

                                                                       

 

 The step response of equation 19 is plotted for five 

different values of λ  and shown in Fig. 11 below 
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Fig.11. Step Response of the Pitch Controller for 

various values of λ  

From equation 21 the convex controller K is found 

out at λ =0.25, 0.25 ( )K s  as follows. 

(20) 
6 5 4 3 2

0.25 5 4 3 2

0.2 s  + 3.425 s  + 32.88 s  + 199 s + 600.6 s +592.9 s + 235.6
( )

s  + 5.956 s  +65.24 s  + 98.06 s +47.75 s - 4.305e-012
K s =  

From equation 19 the convex controller 0.25 ( )K s is 

found out at λ =0.25 as follows. 

(20)
6 5 4 3 2

0.25 5 4 3 2

0.2 s  + 3.425 s  + 32.88 s  + 199 s + 600.6 s +592.9 s + 235.6
 ( )

s  + 5.956 s  +65.24 s  + 98.06 s +47.75 s - 4.305e-012
K s =  

It is observed that 0.25 ( )K s  is neither a PID 

controller nor the average of two PID controllers. 

Rather it is a optimized controller which stabilizes 

the close loop performance. The Bode plot for 

equation 20 is plotted in the fig. 12 below to find out 

gain margin (GM) and phase margin (PM) to 

measure the performance criteria. It was found from 

the phase plot, the GM is very high as the phase plot 

does not cross the -180 
0
 line and the minimum PM 

obtained is 84.5
0
 which is higher than the required 

PM. The steady state value to the step input is found 

out to be 1 resulting steady state error zero.Thus the 

convex controller satisfies all the performance 

criteria. 
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Fig.12.  The Bode Plot of 0.5 ( )H s  

6. KHATITONOV’S STABILITY TEST 

Kharitonov’s stability
 

(Kharitonov, 1979; 

Minnichelli, et.al., 1989) test is carried out to show 

the obtained close loop transfer function 

0.25 ( )H sλ= is stable with respect to parametric 

perturbation. 

The characteristic equation for close loop pitch 

control system   with optimal controller is obtained 

from equation 19 is given below 

 
8 7 6 5 4 3

2

(21)  12 178 1111  6624 17856

                                   21331 12484 3026 0

s s s s s s

s s

+ + + + +

+ + + =

    

The four polynomial 1 2 1( ), ( ), ( ),g s g s h s and 

2 ( )h s with 20% perturbation to the coefficients of the 

above characteristic equation are found below.  

(22) 

2 4 6 8
1

3 5 7
1

2 4 6 8
2

3 5 7
2

 ( ) 2723.4 23464.1 5961.6 195.8

 ( ) 11235.6 19641.6 999.9 13.2

 ( ) 3328.6 19197.9 7286.4 160.2

 ( ) 13732.4 16070.4 1222.1 10.8

g s s s s s

h s s s s s

g s s s s s

h s s s s s

= + + + +

= + + +

= + + + +

= + + +

 

The four Kharitonov’s polynomial 

(23) ( ) ( ) for , 1,2kl k lk g s h s k l= + =  

The Kharitonov’s polynomial are computed using 

equation 22 and 23 found to be Hurwitz .So the pitch 

control system is stable within a specified value of 

parametric perturbation. 

 

11

2 3 4 5

6 7 8

12

2 3 4 5

6 7 8

22

(24)

( )

2723.4 11235.6 23464.1 19641.6 5961.6 999.9 

195.8 13.2 

( )

2723.4 13732.4 23464.1 16070.4 5961.6 1222.1 

195.8  10.8  

( )

3328.6 13732.4 191

k s

s s s s s

s s s

k s

s s s s s

s s s

k s

s

=

+ + + + +

+ + +

=

+ + + + +

+ + +

= + +
2 3 4 5

6 7 8

21

2 3 4 5

6 7 8

97.9 16070.4 7286.4 1222.1 

  160.2  10.8  

( )

3328.6 11235.6 19197.9 19641.6 7286.4 999.9 

160.2  13.2  

s s s s

s s s

k s

s s s s s

s s s

+ + +

+ + +

=

+ + + + +

+ + +

  

7. MODEL REDUCTION 

The algorithm (Matlab ; Levit  and  Sreeram, 1995) 

proposed  in this paper for model reduction computes 

state-space balancing transformations directly from a 

state-space realization avoiding unnecessary matrix 

products. A key feature of this algorithm is the 

determination of a transformation through computing 
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the singular value decomposition (SVD) of a certain 

product of matrices without explicitly forming the 

product. The model reduction is performed after 

preserving all closed-loop stability and the closed-

loop performances.  

0.25( )H s  in equation 19 is converted to a continuous 

state-space model and grammians (Matlab)
 
denoted 

as g are found as follows 

 [0.8846,0.5282, 0.1723,0.0366,0.0119,0.0071,0.0031,0.0001]g =  

The last three values of g are eliminated to obtain 5
th

  

order  reduced model . 

Transfer function of reduced order model using hdel 

(Matlab) method results as 

4 3 2

0.25 5 4 3 2 

 4.144 s  + 64.08 s  + 375 s  + 584.6 s + 356
(25)  ( )=  

s  + 9.808 s  + 102.6 s  + 484.9 s + 602.1 s + 353.2
H s                                                                       

Transfer function of reduced order model using hmdc 

(Matlab) method results as 

(26) 

5 4 3 2

0.25 5 4 3 2

-0.008177  4.542 134  +1353 3199 1354
( )

 28.59 207.6 2000  3195 1354

s s s s s
H s

s s s s s

+ + + +
=

+ + + + +

        

The fig. 13 below illustrates the comparison between 

the step responses of the original model as in 

equation 19 and the reduced models obtained in 

equations 25 and 26 using both model reduction 

techniques discussed above. 
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Fig.13. Step Response of the Original Model and 

Reduced Model 

8. CONCLUSION 

This makes a sensible formulation of the controller 

design problem by considering simultaneously all 

the closed-loop transfer functions of interest. The 

paper stresses that the closed-loop transfer matrix H 

should include every closed loop transfer function 

necessary to evaluate a candidate controller. Most 

of the design specifications for pitch control of an 

aircraft are closed loop convex. There might be 

infinite number of stable controllers for any real 

value of the λ in the range 0 to 1.But for a optimum 

value of λ  there exists a single controller which 

satisfies all close loop performance criteria. The 

overshoot and the settling time of a pitch 

maneuvering dynamics would be brought down to 

an appreciable limit by a properly designing a 

convex controller. Mean Square Error (MSE) 

method of optimizing the parameter λ to produce 

optimal performance specification in all possible 

combination of pitch dynamics has been suggested. 

The combined system with plant and convex 

controller is stable for parametric perturbation and 

it satisfies all design specifications. The order of 

the plant is reduced to obtain a relatively lesser 

degree of transfer function which yields a simpler 

controller. 
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