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Abstract: Classical Logic showed early its insufficiencies for solving AI problems. The 
introduction of Fuzzy Logic aims at this problem. There have been research in the 
conventional Rough direction alone or in the Fuzzy direction alone, and more recently, 
attempts to combine both into Fuzzy Rough Sets or Rough Fuzzy Sets. We analyse 
some new and powerful tools in the study of Uncertainty, as the Probabilistic Graphical 
Models, Chain Graphs, Bayesian Networks, and Markov Networks, integrating our 
knowledge of graphs and probability. 
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1. FUZZINESS 

Classical Logic showed early its insufficiencies for 
solving AI problems. We need a more flexible tool, 
making gradation of certainty possible, indicating 
different degrees of membership to a set or in the 
fulfilment of a relation. In other words, that allows 
for subtleties. For instance, in classical Set Theory, 
each element either belongs totally to the set, or it 
does not belong at all, without any possible 
intermediate situation. Also, relations can be either 
verified or not, but not partially verified. And this 
ought to be possible, because it is so in the real 
world, very different indeed to formal worlds. The 
ideas of set, relation, etc. must be modified in the 
sense of covering adequately the indetermination or 
imprecision of the real world, introducing so Fuzzy 
Logic. Other nuances are introduced by Modal Logic, 
with two new concepts: necessity and possibility. Or 
with the 3-valued Logic of Lukasiewicz-Moisil (with 
truth values: 0, 1/2 and 1), giving (through the 

corresponding generalization) the multi-valued 
Logic. 

We define the "world" as a complete and coherent 
description of how things are or how they could have 
been. In the problems related with the "real world", 
which is only one of the "possible worlds", 
Monotonic Logic often fails. But such type of Logic 
is the classical in formal worlds, such as in 
Mathematics. It is a real problem, because the 
"common sense" logic is non-monotonic, and this is 
our usual logic. 
An element of the Universe, U, can belong more or 
less to an arbitrary set C. It can belong to C in 
different degrees. 
From 0, when it belongs absolutely nothing to C, to 
1, when it belongs totally to C. Or in any 
intermediate degree, like: 0.5, 0.3, 0.1..., but always 
between 0 and 1, both values included. 
Such "membership degree" value can be assigned by 
an adequate "membership function", which range is 
the closed unit interval, [0,1]. 
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So, the application can be expressed by f: C → [0,1], 
informing about the "membership degree", of such 
element, x, of the universe U, to the set C. 
In a Classical Set, therefore, the range of the function 
f should be reduced to the set {0, 1}. 
Given n universes of the discourse, we define a fuzzy 
relation, R, as a membership function that associates 
each n-tuple, a value of the unit closed interval, [0, 
1]. 
The fuzzy relation, R, can be defined through such 
"membership function".  
The Cartesian product of two fuzzy sets, F and G, 
will be a fuzzy binary relation, through the minimum 
between the membership degrees. Sometimes, it is 
very useful to symbolize each fuzzy relation as one 
matrix, where the entries can be any real number 
between 0 (not related) and 1 (totally related, or 
simply, related). 

 
There exists a clear analogy between the composition 
of fuzzy relations and the product of matrices.  
To show this connection, it is sufficient to establish 
the correspondence 

One  +     →  one max 

One  • →   one min 

For this reason, the composition of fuzzy relations 
can also be called "max-min matrix product".  

As a particular case of the previous definition for the 
composition between fuzzy relations, we can 
introduce the composition between a fuzzy set and a 
fuzzy relation. This can be very useful in the "Fuzzy 
Inference" where we attempt to obtain new 
knowledge from the available. Obviously, in such 
case, the fuzzy set can be represented by one row 
matrix, or a column matrix, depending on the order in 
the product. 

The usual properties of the classical relations can be 
translated to fuzzy relations, but the transitive will be 
modified. 

• R is Reflexive if 

R(x, x) = 1 

for each x in the set C, into the universe, U. 

According to this, each element would be totally 
related with itself, when R is reflexive.  

• R is Symmetric if 

R(x, y) = R(y, x), for each pair (x, y) 

Therefore, the principal diagonal acts as a 
mirror, in the associate matrix. 

• R is Transitive 

Not in the usual way for relations or associate 
matrices, but when: 

R(x, z) ≥  max (min {R(x, y), R(y, z)}) 

All these mathematical methods can be very useful in 
Fuzzy Logic and in many branches of Artificial 
Intelligence; therefore, in Computational Intelligen-
ce. 

We can introduce new generalized versions of 
Classical Logic. So, the Modus Ponens Generalized, 
or the Modus Tollens Generalized or the Hypothetic 
Syllogism. 

To each Fuzzy Predicate, we will associate a Fuzzy 
Set: the defined by such property, that is, composed 
by the elements of the Universe such that totally or 
partially verify such condition. 

So, we can prove that the class of fuzzy sets with the 
operations ∪, ∩ and c (path to the complementary) 
does not constitute a Boolean Algebra, because 
neither the Contradiction Law nor the Third 
Excluded Principle work in it. Geometrical and 
algebraic proof is easy, by a counterexample: it 
suffices taking an element with membership degree 
that belongs to (0,1). 

 

2. ROUGHNESS 

The concept of Rough Set was introduced by the 
polish mathematician Zdzislaw Pawlak in 1982. 
From then, some theoretical advances with the 
corresponding applications are emerging. 
It is possible to apply Rough concepts to a wide 
range of problems, as the prediction of financial risk, 
voice recognition, image processing, medical data 
analysis and so on. 
Taking object, attribute or decision values, we will 
create rules for them: upper and lower 
approximations and boundary approximation. Each 
object is classified in one of these regions, in this 
way: 
 
For each rough set, A !  U, we dispose of  

 
• Lower Approximation of A: 
Collection of objects which can be classified 
with full certainty as members of A. 

 
• Upper Approximation of A: 
Collection of objects which may possibly be 
classified as members of A.  
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Obviously, this class is wider than the 
aforementioned, containing between both the 
Rough set.  

 
Rough Set Theory is a model of Approximate 
Reasoning. According to it we will interpret 
knowledge as a way to classify objects.  
We dispose of U, the universe of discourse, 
composed by objects, and an equivalence relation on 
U, denoted R. 
The procedure is to search a collection of subsets in 
U (categories), such that all the elements of the same 
class possess the same attributes with the same 
values.  
So, we obtain a covering of U by a set of categories.  
The elementary knowledge is encoded by a pair 
(U,R), composed of "elementary granules of 
knowledge". They constitute a partition in 
equivalence classes, into the quotient set, U / R. 
Given two elements, it is possible to define when 
they are mutually indiscernible. For this, we say that 
is the Indiscernibility Relation.  
Therefore, it is possible to introduce the application 
which assigns to each object its corresponding class.  
Then, such indistinguishability allows us to introduce 
the Fibre of 

R
a , defined by the aforementioned 

relation R.  
So, the collection of such fibres, in the finite case, 
produces a union: this union of fibres is called a 
granule of knowledge.  
The pair (U, R) will be a Knowledge Base. 

 
We say that an object, or category, is R-rough, if it is 
not R-exact. 
For each R-rough set, Y! U, we define two associate 
R-exact sets 

 
• the R-lower approximation of Y 

 

R  Y = {x U! :[ ]
R

x Y! } (1) 

 
• the R-upper approximation of Y 

 

R Y = {x!U:[ ]
R

x Y! "# } (2) 

 
So, we can represent the Rough set, Y, through the 
pair ( R Y, R Y). 
Observe that: 

R  Y! Y R!  Y, Y U! "  (3) 
 
And furthermore: 

Y is R-exact R!  Y= R Y (4) 
 

Given a Knowledge Base (KB): 

 
K ≡ (U, R) 

 
we will take the collection of classes 

 

K
E  = {R - exact sets on U} 

 
closed with respect to the usual set operations ! , ∩ 
and c (complement).   
It verifies the known properties of a Boolean 
Algebra. More concretely, we can call it a Field of 
Sets. 
But it is not the case when we deal with R-rough sets.  
Because, for instance, the union of two R-rough sets 
can be a R-exact set. 
The coincidence of this Rough Set Theory with the 
Classical Theory of Sets occurs when we only work 
with R-exact sets. 
An interesting generalization of Rough Set will be 
the 
 

Generalized Approximation Space,  
 

denoted 
 

GAS 

 
It consists of a triple 

 
(U, I, ! ) 

 
where U will be the Universe; I, the uncertainty 
function,  
 

I: U → ℘(U) 
 
and  !  the Rough Inclusion Function. 

 
An example of this type of Rough Inclusion Function 
will be the Generalized Rough Membership 
Function. So, given any subset, we have both GAS - 
approximations, lower- and -upper. 

 
3. APPROXIMATIONS 

Its names induce to thinking of almost the same 
concept. But they are very different approaches to 
uncertainty in the set of data. It depends of the nature 
of vagueness in the problem, or the convenience in 
applications. 
Both resources cover distinct aspects of the 
Approximate Reasoning. For this reason, both 
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paradigms address the Boundary Problem in Non-
Crisp cases.  
Dubois and Prade (1992) establish the relation 
between  

 
1) Rough Fuzzy Set 

 
and 

 
2) Fuzzy Rough Set. 

 
In the case 1), we will pass from fuzzy sets, through 
filtering, by the classical equivalence relations to 
quotient spaces, which are fuzzy sets. 
In the case 2), we imitate the rough set 
approximation, but now with fuzzy similarity 
(instead of equivalence) relations. 
We work within the collection of fuzzy sets on U, 
endowed with the operations: max and min.  
So: 

 
{Fuz (U, [0, 1]), max, min} 

 
This produces a Zadeh Lattice.  
And provided of the path to complementary operator 

 
{Fuz (U, [0, 1]), max, min, c} 

 
it is a Brouwer-Zadeh Lattice.  

 
This lets us introduce now the adequate Rough 
Approximation to Fuzzy Sets. 
 
Our purpose is double: 

 
• Given A!Z (U), to induce a fuzzy set in U / 

R, by A. 

 
• To reach the approximation of A, relative to 

R, according to the Rough Set Theory. 

 
The notion of Fuzzy Rough Set is dual to the concept 
above. 
We consider again the family of fuzzy sets in the 
universe U, with values in the closed unit interval 
 

Fuz (U, [0, 1]) 

 
And we need to analyze the fuzzy notion of 
equivalence relation and then, the fuzzy partition 
induced. Respect to the equivalence relation, the 
closest concept is the T-Fuzzy Similarity Relation. 

In the past, the relationship between Fuzzy and 
Rough concepts were studied by some 
mathematicians and computer scientists, as Pawlak, 
Nakamura, Pedricz, Dubois and Prade, Pal, Skowron 
and so on. 

 
4.  BAYESIAN NETWORKS 

Another very promising and ever increasing way to 
handle uncertainty is based on Probabilistic 
Graphical Models; in particular, by Chain Graphs, 
Bayesian and Markov Networks. 

Recall that every graph, in turn, is another pair 
 

G = (V, E) 
 

where V is the set of vertices, or nodes, and E the set 
of links or edges between them. And in the particular 
case of DAGs, we must add the condition of being a 
directed graph and without cycles. 
 
Two nodes, a and b, are said to be connected in the 

graph, if there are paths from a to b and from b to a.  

Both paths connecting a and b may be one and the 

same undirected path, or two distinct paths.  

Connection defines a number of disjoint subsets of 

connected nodes, {Ci} i= 1,2,…,n,  referred to as 

connectivity components: 

E = ∪ Ci =  C 1 ∪ ... ∪ C n 

Graph theory defines a number of different types of 

subsets of variables related to a specific node, as its 

parents, its neighbours and so on. 

 
A Chain Graph (denoted CG) is a generalization of 
both classical types: Undirected and Directed Graphs, 
that is, it includes UGs and DAGs, being represented 
by undirected and directed edges. Therefore, they are 
mixed graphs, composed by directed and undirected 
edges.  
 
Two CGs are Markov Equivalent, if they represent 
the same statistical model.  
 

A Bayesian Network, or Bayesian Net (BN) is a pair 
(G, P), where G is a directed acyclic graph, or DAG, 
their structure and a probability distribution P, 
associated with each random variable, represented by 
a node into the graph.  
So, a DAG is a BN, relative to a set of random 
variables if the joint distribution of the node values 
can be expressed as the product of local distributions 
of each node and its parents: 
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P (X1, X2,..., Xn) = Π P (Xi / paXi)      (5) 

 
Therefore, Bayesian Networks, also called Belief 
Networks, are a Probabilistic Graphical Model 
(PGM) that represents a set of variables and their 
probabilistic independencies. In other words, they 
encode joint distribution probabilities.  
Formally, a BN is a DAG whose nodes represent 
random variables, and whose missing edges encode 
CIs (conditional independencies) between the 
variables. 
 
We say that two BNs are equivalent (denoted by the 
symbol Χ), if both represent the same joint 
probability distribution.  

The following properties hold: 

 
• Reflexive: B Χ B, ∀ B 

 
• Symmetrical: if B Χ B´⇒ B´Χ B 

 
• Transitive: if B Χ B´ and B´Χ B´´⇒ 

⇒ B Χ B´´ 
 

Therefore, it is an Equality or Equivalence Relation, 
defined on the BNs set. On such mathematical object, 
it is well established a partition in equivalence 
classes, as we will later see. 
 
Let S and S’ be two of such structures of BNs on V. 
Then, we say that S is equivalent to S’, which is 
denoted by S Χ S’, if for each parameterization, θ, of 
S, there exists another parameterization, θ’, of S’, 
such that 
 

P (V /S, θ) = P (V / S´, θ´)  (6) 
 
Let C be a class of DAGs Markov equivalent among 
them. Then, their essential graph would be the 
smallest graph greater than every DAG that belongs 
to the class. If we denote the essential graph as G*, 
this is equivalent to saying  

G* = ∪ {G: G∈C}  (7) 
 

where such graph union is reached by the union of 
the nodes and edges of G   
 

V (G*) = ∪ V(G)   (8) 
 

E (G*) = ∪ E(G)   (9) 
 

The directed edges connecting the same pair of 
nodes, but showing opposed directions, in two graphs 
belonging the same class, C, are substituted by a line. 
Therefore, 
 

G* = min [max {G: G ∈S}] =  

 
= ∩ [∪ {G: G∈S}] (10) 

 
Being S the equivalence class that represents G, with 
min ↔ inf and max ↔ sup, for infinite graphs. 
So, G* will be the lesser of the upper bounds for 
every graph of the class represented.  
 
Many efforts are devoted in the last years to develop 
this rich field, in the intersection of Graph Theory 
and Probabilistic Methods. 
 
And also many different lines of advance in the 
research, with new and interesting support by more 
geometrical tools, such as 
 

• Petri Nets 
 

• Voronoi-Thiessen-Dirichlet Diagrams,  
 

or its dual 
 

• Delaunay Tesellations,  
 
and also by  
 

• Hypergraphs.  
 

Or algebraic tools, in the last times, as 
 

• Imsets 
 

• Graphoids 
 

• Semigraphoids 
 

• Matroids 
 

And so on. All of them very useful in many other 
fields.  

 
5. CONCLUSIONS 

It is possible to establish stronger mathematical 
foundations for research with Probabilistic 
Graphical Models, connecting with the 
aforementioned tools and also by the essential theory 
of Random Graphs, created by Paul Erdös and Alfred 
Rényi, and from then cultivated by members of the 
Hungarian graph school, as Bela Bollobás and Laszlo 
Lovász. Or by numerous Romanian scientists with 
great contributions to Computer Science as the 
pioneer Grigor Moisil, Solomon Marcus, Florin G. 
Filip, and many others. 
 

I hope this paper contributes to a clearer vision, being 
these concepts necessary to advance in AI. Because 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, Vol.31, No.2, ISSN 1221-454X 

 

42 
 

both theories are two complementary ways of 
reaching the summit: solving more efficiently a 
fundamental problem of data, Uncertainty and 
Vagueness. 
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