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Abstract: This main objective of the paper is to stabilize an electric vehicle in optimal 

manner to a step lane change maneuver. To define the mathematical model of the 

vehicle, the rigid body moving on a plane is taken into account. An optimal lane 

keeping controller delivers the adequate angles in order to stabilize the vehicle’s 

trajectory in an optimal way.  Two degree of freedom linear bicycle model is adopted as 

vehicle model, consisting of lateral and yaw motion equations. The proposed control 

maintains the lateral stability by taking the feedback information from the vehicle 

transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. 

Based on the obtained linear mathematical model the quadratic optimal control is 

designed in order to maintain the lateral stability of the electric vehicle. The numerical 

simulation results demonstrate the feasibility of the proposed solution. 

Keywords: electric vehicle, optimal control, lane keeping control, Riccati. 

 

1. INTRODUCTION 

Intelligent transportation systems have been 

extensively studied beginning with 1990’s 

(Ackermann et al., 1995), (Patwardhan et al., 1997), 

(Wang et al., 1999), (Yamamoto et al., 1999), 

(Hedrick et al., 1994).  

Modern control has been implying in order to obtain 

higher performances of the vehicle response (Tanaka 

et al., 2000), (Tai et al., 2000), (Lu et al., 2002), 

(Ibaraki et al., 2005), (Jin-Hua et al., 2005), 

(Mammar et al., 2006), (Mouri et al., 2002), (Feng et 

al., 2010).  

These systems have certain advantages, most 

importantly being the safety of the driver and 

passengers.  

Steering control involve both techniques: lane 

keeping control and lane changing control (Jin-Hua 

et al., 2005).  

The main difference between the above mentioned 

techniques is that the later must follow a given 

reference input for lateral motion, instead of 

following the center lane, like in the first method.  

Both methods put in control the vehicle in case of 

crosswinds, a front-tire blowout or for uneven 

pavement. For a step lane trajectory reference 

changing, the mathematical model of the lateral 

vehicle is used. In order to give more confidence and 

safety for driver and passengers, an asymptotically 

stable vehicle system response for all state variables 

is obtained by using a linear quadratic controller. 
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2. MATHEMATICAL MODELLING OF THE 

ELECTRIC VEHICLE MOVEMENT 

It is well known that the conventional control based 

only the front–wheel steering vehicle (2WS) 

regulates with good performances the lateral vehicle 

deviation.   

Two wheel steering control (2WS) has the 

disadvantage of damping behavior of yaw dynamics 

(Mouri et al., 1997), (Raksincharoensak et al., 2002). 

Therefore, in order to obtain a good damping 

behavior of both lateral and yaw motion, 4WS 

mathematical model of vehicle has been taken into 

consideration.  

Vehicle dynamics are accurately described by 6 

degrees of freedom, but in order to meet the objective 

of the paper only 2 degree of freedom (2DOF) are 

considerate to describe the lateral dynamics.  This 

model gives a very good approximation of 

experimental results for the vehicle lateral dynamics 

(Cerone, et al., 2002). 

 

Following the mathematical modeling of the electric 

drives vector control, by using the similitude 

principle, mathematical modeling of electric vehicle 

is accomplish in moving reference frame solidar with 

vehicle movement. In this way, moments of inertia 

for vehicle are constant. The vehicle motion is 

assumed planar.  

 

The motion of the vehicle is described by using a 

three coordinates system (see Fig.1, according to 

Automotive Society of Engineers – SAE): x-axis is 

oriented on forward direction and on the longitudinal 

plane of symmetry of the vehicle; y-axis is oriented 

on lateral direction, on right side of vehicle; z-axis is 

oriented downward to vehicle. The origin of the 

coordinate system is adopted as the vehicle’s center 

of gravity (CG). 

 

Thereafter, taking into consideration the small 

angular changes, the parameters of electric vehicle 

movement are constant also in fixed reference 

system, conducting towards an invariant dynamic 

system.  

 

The analysis of vehicle movement is done by 

neglecting the wheel suspension dynamics, effects of 

rolling and pitching, therefore the rigid body 

assumption for the vehicle is fitted.   

 
Fig.1. The standard coordinate system for the electric 

vehicle, according to SAE 

In Fig. 2 both electric vehicle movement analysis in 

mobile (x,y) and fixed (α,β) coordinate systems at 

successive instants t and t+∆t is presented. 

 
Fig.2. Vehicle movement analysis both in (x,y) and 

fixed (α,β) coordinate systems at successive 

instants t and t+∆t 

In order to deduct the vehicle motion equation, it is 

necessary to know the acceleration expression of the 

center of gravity of vehicle. Further, it is assumed the 

uniform motion of vehicle, therefore longitudinal 

velocity component ctv x == x& . In this way, only 

the lateral and yaw motion equations are necessary to 

define the mathematical model of the vehicle.  

 

 

Fig.3. The variations of longitudinal and lateral 

velocity vehicle components  

The variation of lateral velocity component, yy vv ∆+

is shown in Fig. 3, where θ∆  is small angular 

variation. 
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Taking into consideration the small angular 

variations, the following expression of the lateral 

acceleration component is calculated: 

 

(1) zxyy wxyvva
ooooo

+=+= θ  

By taking into consideration that the vehicle is 

symmetrical in (x,z) plane,  the mathematical model 

of the bicycle (Fig.4) can be used,  in which fδ  is 

the front wheel steering angle, and rδ  is the rear 

wheel steering angle; xfF2  - is lumped longitudinal 

force at front wheel; xrF2 - is lumped longitudinal 

force at rear wheel; yfF2 - is lumped lateral force at 

front wheel; yrF2 - is lumped lateral force at rear 

wheel; ψ -heading angle. 

 

 
Fig.4. 2DOF Bicycle model of the electric vehicle 

and the velocity of the electric vehicle in ( )βα ,  

fixed coordinates system. 

In case of small angular displacements, the forces 

added along the y axis, conduct to the following 

expression: 

 

(2) 
yryfrxr

ryrfyffxf

2F2Fsinδ2F

cosδ2Fcosδ2Fsinδ2Fm

+≅−

++=ya
 

where
 

the lateral acceleration component is 

calculated as: 

(3) zxyy wxyvva
ooooo

+=+= θ  

θ&=zw , the yaw velocity around z-axis 

 

In case of small angular variations, by adding the 

torques toward z axis (Fig.4), the yaw equation of 

motion is obtained. 

 

(4) 

yr2yf1r2xr

r2yrf1xff1yf
z

z

F2lF2lsinδl2F

cosδl2Fsinδl2Fcosδl2F
dt

dw
J

−≅+

−+=

 

where zJ is moment of inertia of vehicle on z-axis. 

2.1. Determinations of the tires slip angles, fα  and 

rα  (Fig.5) 

Taking into consideration the following notations: 

the tire slip angles ( fα , front; rα -rear); the cornering 

stiffness coefficients: of the front tires - 
f

yf

f
dα

dF
C =α

and of the rear tires
 

r

yr

r
dα

dF
C =α .  

 

Fig.5. Tires slip angles representation  

The following assumptions are made: 

 

(5)  ctCC ==
rf αα , 

and are determined experimentally.  

 

From Fig. 5, supposing the small angle variations, the 

tire slip angles ( fα , front; rα -rear) are determined 

and taking into consideration the above mentioned 

equation, the equations of lateral forces becomes: 

 

(6) 















+

−=
o

o

x

ywl
δCF z1

fαyf f
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o
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x
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δαCF z2
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where
o

yvy = and 
o

xv x =  

By writing the y-axis force equilibrium equation, the 

lateral motion equation is obtained: 

 

(7) 
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The yaw motion equation is obtained by using the

yfF and yrF expressions:  
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The vehicle system response must be obtained in 

fixed coordinate system. Therefore, from Fig.4, by 

taking into consideration the small angular variations 

assumption, the velocity of the electric vehicle in 

( )βα ,  fixed coordinates system could be obtained: 

(9) 

oooo

yψvcosψysinψxβ x −−≅−−=
 

(10) sinψycosψxα
ooo

−=  

For a sudden step lane change, the vehicle yaw rate is 

equal to the yaw rate error: ψw z
&=

  
and it is 

assumed that: θψ = . 

 

By adequately choosing the state variables, the 

standard form of the state space mathematical model 

can be determined: 

 

(11) 
o

yx1 = , θx 2 = , z3 wx = , βx 4 = , 

respectively: 

 

(12) 
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where, 

 

 
x
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3. OPTIMAL CONTROLLER DESIGN 

The control input of lane-keeping controller is 

determined by using linear quadratic control theory. 

All state variables of vehicle are fed back to 

determine the current steering wheel angles.  

 

The objective for the electric vehicle control is to 

achieve an asymptotically stable system response for 

a step lane change maneuver.  

A linear quadratic regulator based controller is 

employed in order to obtain an asymptotic stable 

response for a controllable state space model. 

3.1. State feedback optimization problem. The 

problem with free final time, and free final 

state 

The discussed dynamic system () is linear, time 

invariant: 

 

(13) ( ) )()( ttt uBxAx ⋅+⋅=&  cu 00 )( xx =t  

In order to optimize the system, the quadratic cost 

function or performance index is introduced:  

 

(14) ( ) ( ) ( ) ( )[ ]dtttttJ
t∫
∞

+=
0

,,
2

1
RuuQxx     

where Q, R are weighting matrices, the final state 

x(T) is unspecified, and the free final time, T→∞. 

 

The optimal control problem consists in determining 

optimal control so that performance index (2) has to 

be minimized. 

 

The initial and final conditions specifications: it is 

assumed that the system starts from zero initial state 

at time t = 0, without specifying the final state. 

 

In order to solve the optimal control problem, the 

Hamiltonian is introduced as followed: 

  

(15) [ ] [ ]

>+<+

><+><=

)]()([),(

)(),()(),(
2

1
),(),(),(

ttt

ttttttttH

BuAxp

RuuQxxupx  

Candidates to optimal solutions are obtained by 

canceling the first order derivative of the 

Hamiltonian (15). Therefore, the optimal control or 

minimum point could be obtained from the following 

equation: 
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(16) ( ) ( ) ( )[ ] 0,,, *** =
∂

∂
tttt

H
upx

u
 

Thereby, optimal control, u
*
, is determined from: 

 

(17) ( ) ( )tt pBRu '1−−=  

In order to determine the costate vector p(t), it is 

obtained differential equation of costate vector:  

 

(18) 
)(

)(
t

H
t

x
p

∂

∂
−=&    

or 

(19) )()()( '
ttt pAQxp −−=&   

 

Replacing the optimal control (17) in the dynamical 

system (13), the following equation is obtained: 

 

(20) ( ) ( )ttt pBRBxAx ')( 1−⋅−⋅=&  

or as: 

(21) ( )tt SpxAx −⋅= )(& ,  

in which the S weight matrix is denoted as: 

 

(22) '1BRBS −⋅= . 

Thus, it is obtained reduced canonical system (23), 

linear, invariant, 2n dimension.  

 

(23) 
( ) ( )


















−−

−
=









)()( '
t

t

t

t

p

x

AQ

SA

p

x

&

&
  

 

To solve this system it is necessary a number of 2n 

frontier conditions. A number of n conditions are 

obtain from initial condition x(t0). The other n 

conditions are obtained from transversality condition 

of cost vector:  

(24) ( ) 0lim =
∞→

t
t

p   

System controllability is checked through the 

controllability matrix, the rank of controllability 

matrix is equal to the order of the dynamic system. 

 

The dynamic system (13) is controllable and by a 

proper choice of weighting matrix R>0 and Q≥0, can 

be assert that optimal solution exists and is unique 

(Athans, 1966): 

 

(25) ( ) ( )tt xKBRu ˆ'1−−=  

where K̂ is a constant matrix, positively defined, 

solution of a nonlinear matrix algebraic Riccati 

equation (MARE): 

 

(26) 0ˆˆˆ'ˆ =−+−− −
QKB'BRKKAAK

1   

Optimal control law (25) assures an asympltotically 

stable system and generates the optimal trajectory:   

 

(27) ( ) ( ) ( ) ( ) 00,ˆ =−= − xxKB'BRAx 1
tt& , 

minimizing the functional cost, the minimum  is 

given by: 

(28) ( )[ ] ( ) ( )tttJ xKxx ˆ,
2

1* =   

for every x(t). 

The control regulates the state trajectories close to 

the origin without excessive control demand. 

The state feedback gains are determined such as the 

functional cost (14) is minimized.  

 

4. IMPLEMENTATION OF THE OPTIMAL 

CONTROL 

In order to show the effectiveness of the proposed 

solution, the following electric vehicle data is 

considerate: 

4.1. Vehicle data 

(29) 
rad

N
30000CC

rf αα == , 1.25ml1 = , 1.27ml2 =

1280kgm = , 
2

z m2200kgJ ⋅= ,
s

m
1.32vx =  

4.2. Dynamic system 

Dynamic system under control is described by 

equation (13). The output vector consists of the 

individual lateral motion of the vehicle, �����, and the 

yaw angle,θ���. 

 

4.3. Choosing of the weighting matrices 

Q matrix: Q =  diag{1 1 1 1}  
 

is chosen such that the transients in electric drive to 

take place with minimum energy losses in the stator 

windings and with optimal kinetic energy 

distribution. 

  

R matrix: R =  diag{1 1 } 
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R matrix is intended to maintain the optimal control  

within acceptable limits. 

 

4.4. Initial and final conditions 

The initial conditions consist of initial time t0 and 

the initial state x0. For the particular case of the 

starting these conditions are: 

(30) �� = 2
��;  ����� = � �� ����
θ����������
β���� � = �0000�      

     Final conditions consist of the final time and free 

final state    

(31) �� = 6
��;  �� = ���
�� ������
θ����������
β���� ���

�� = �0000�      
      It is noted that the actual state values are 

established naturally by using the adequate 

mathematical model of the process, therefore the 

optimal control problem being with free final state. 

 

The  state vector of the vehicle system is: 

���� = � �����
θ��������
β��� �, and the control vector is given by 

the front and rear wheel steering angles  �∗��� =� �∗��� !∗���", taking into consideration a unitary 

transmission rate, and neglecting the servomotor 

dynamics. 

 

Optimal control solution is given by (25). Therefore, 

the steering angles are calculated as a state feedback 

control input. 

 

The K̂  matrix is determined by replacing the 

corresponding matrices A, B, R, Q in (26) : 

 

K̂ =    0.1082    0.1279    1.1843    0.7593 

            0.1279    0.1082    0.7593    1.1843 

 

In order to cancel the steady-state error an adequate 

reference filter has been, the voltage control has been 

obtained from: 

 

(32) �#$∗ = −&'()*+,� + ./  

The v constant must be inserted in order to obtain a 

zero steady state error. The considered steady state 

control error is as follow: 

 

(33) 0# = lim4⟶67/��� − ����8 = /# − lim4⟶6 ����  

     = /# − 9: lim4⟶6 ����;<<<=<<<>?@A
        

The stationary solution xs results from the following:  

 

(34) 0 = �B − CD:��# + C./#    

(35) �# = −�B − CD:�'(C./#   

The steady state error: 

 

(36) 0# = /# + 9:�B − CD:�'(C./#    
(37) 

EA!A = 1 + 9:�B − CD:�'(C.  

Therefore, the steady state error does not appear if 

the following equation is valid: 

 

(38) . = − (GH�I'JKH�LMJ 

The structural block diagram of the entire drive 

control is shown in Fig. (6): 

 

 

Fig.6. Structural block diagram of the optimal control 

of linearized system 

 

4.5. Validation of the optimal solution by numerical 

simulation 

calfaf = 30000 

calfar=calfaf 

l1 = 1.25 

l2 = 1.27 

m = 1380 

Jz = 2200 

vx=21.3 

 

The numerical values of the specific matrices (A, B) 

of the dynamic system are as follows: 

 

A = 

   -4.0825         0  -21.2592         0 

         0             0    1.0000         0 

    0.0256         0   -4.0658         0 
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   -1.0000  -21.3000         0         0 

 

B = 

   43.4783   43.4783 

         0         0 

   34.0909  -34.6364 

         0         0 

The controllability matrix: Qr=ctrb(A,B) 

Qr =  1.0e+004 * 

  Columns 1 through 6 

 
    0.0043    0.0043   -0.0902    0.0559    0.6606   -0.5299 

         0         0    0.0034   -0.0035   -0.0137    0.0142 

    0.0034   -0.0035   -0.0137    0.0142    0.0536   -0.0563 

         0         0   -0.0043   -0.0043    0.0176    0.0179 

 

  Columns 7 through 8 
 

   -3.8364    3.3597 

    0.0536   -0.0563 

   -0.2010    0.2152 

   -0.3678    0.2276 

 

The rank of the matrix Qr can be find as: 

rank(Qr): ans =    4 

 

The weighting matrices are chosen as in Section 

(4.3). 

The optimal state feedback gain, as the solution of 

the matrix Riccati algebraic equation: 

 

K = 

    0.5862    6.2017    0.6624   -0.9401 

    0.7389   -3.3525   -0.8676    0.3409 

 

S = 

    0.2979   -0.9401 

    0.9592    0.3409 

 

Taking into consideration that the regulator-based 

closed loop system can be described by the following 

matrices:  

 

Ac = A-B*K;  

Bc=[0 1 

        0 0 

        1 0 

        0 0] 

 

The entire system is embedded in Matlab as: 

 

sys = ss(Ac, Bc, Cc, Dc); 

 

The solutions of the characteristic equation are as 

follows: 

 

poles =eig(Ac) 

 -55.9664 + 6.7568i 

 -55.9664 - 6.7568i 

  -3.2296 + 3.1087i 

  -3.2296 - 3.1087i 

 

For a stable system, the real part of poles must all be 

less than zero. It could be noted that an 

asymptotically stable system responses can be 

obtained, taking into consideration that the real part 

of the system’s closed loop poles are situated in the 

left side of the s-plane. 

 

5. SIMULATION RESULTS 

To shows the efficacity of the proposed control the 

step-lane maneuveur test has been used and the 

system’s responses have been obtained (Fig. 7 to 

Fig.9).  

 

The lane change reference is similar with a step 

signal. It could be noted that the stable behaviour of 

the vehicle output response (Fig.7) was obtained by 

applying the optimal control (25).  

 

 In order to obtain a zero steady-state error, an 

adequate input filter v has been applied (38). Also, by 

introducing the optimal controller, the state variables 

are limited due to the proper choice of weighting 

matrices, and by minimizing the quadratic 

performance index it ensures energy savings.  

 

The performances of the proposed control are 

underlined in Fig. 7 to Fig. 9, considering a step lane 

reference for the vehicle system.  

 

Fig.7 The vehicle lateral desired lane and the actual 

vehicle response to the applied step reference 

The vehicle system behavior to the applied step 

reference (0.3m applied at 2s after simulation 

running) is shown in Fig.7. It could be underlined, 

that by applying optimal control (25) the 

asymptotically stable system is obtained.  

The optimal control vector is given by the front 

(Fig.8) and rear (Fig.9) wheel steering angles 

0 1 2 3 4 5 6
0
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Fig.8 The front steer angle response of the vehicle  

 

Fig.9 The rear steer angle vehicle response 

 

6. CONCLUSIONS 

In this paper, a suitable optimal control for electric 

vehicle system stabilization purposes has been 

proposed. 

Considering a direct mechanical contact of the 

steering wheel, for improving handling and stability 

of vehicle the performance of the proposed control is 

evaluated under a step lane maneuver by numerical 

simulation. The optimal control regulates the system 

responses (state trajectories of the state vector close 

to origin without excessive control demand) and 

assure an asymptotically vehicle system such that the 

performance index (14) is minimized. The obtained 

results show that the feasibility of the proposed 

control solution. 

In order to implement the multivariable optimal 

controller the lateral dynamics of the vehicle were 

considered. The entire system was simulated in 

Matlab/Simulink environment. The closed loop 

optimal vehicle system is a stable one. 

Fast perturbation influence rejection can be 

observed at t = 2s, in a relatively short time. The 

filter on the reference vector leads to a zero steady 

state error. Therefore, the imposed objectives were 

successfully achieved. 
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