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Introduction 

 People perceive through images most information from the surrounding reality through the 

visual system following an interpretation of the images in the optical center of the brain. However, 

the human system of image acquisition and interpretation does not exhibit the performance of 

retaining fine details existing in images, and therefore several useful information is lost. 

Medical imaging, as an important branch of the field of imaging, deals with the processing 

of complex digital medical images and is composed of a set of techniques for acquiring, storing, 

improving the clarity of the image and processing the information contained in the image, 

described below: 

- The acquisition of the digital image is done with the help of scanners, optical microscopes, or 

medical imaging tools that generate the image from the acquired signal. 

- The preprocessing aims to improve the image from a visual point of view, to reduce the noise 

generated by the acquisition instrument, to eliminate the artifacts, to manipulate the brightness 

and the contrast, to accentuate the edges of the image. 

- Segmentation decomposes a digital image into decomposed components. Following this 

process, objects or regions of interest that satisfy certain uniformity criteria are extracted from 

the image. 

In my paper I used public databases containing MRI images acquired from healthy 

patients or diagnosed with neurodegenerative but also private diseases, from St. Andrew's 

Hospital in Galaţi, mentioning that an agreement was signed with the investigated patients. 

Image processing was performed in the advanced programming environment Matlab 

R2017b, and the predictive analyses in the statistical application SPSS 17.0. 

 

Motivation 

The main reason for choosing this research topic is its multidisciplinary nature, namely 

the possibility to apply knowledge specific to physics (transport physics, diffusion phenomenon 

in particular), mathematical statistics and computer science (by implementing scripts in different 

programming languages or using of software) in medicine. 

The paper focuses on the interpretation of brain tissue images, starting with statistics 

published in The Royal Society Publishing that show that with the aging population, the current 

incidence of neurodegenerative diseases is steadily increasing worldwide. According to 1, in 

2015 there were about 40 million patients diagnosed with neurodegenerative diseases 

(Alzheimer's, Parkinson's, Pick, Huntington, dementia, etc.) and the numbers will increase to 

about 135 million patients by 2050. 

1 (https://royalsociety.org/~/media/about-us/international/g-science-statements/2017-may-aging-population.pdf) 

 

 

https://royalsociety.org/~/media/about-us/international/g-science-statements/2017-may-aging-population.pdf
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The research objectives pursued  

 

According to the title of the doctoral thesis "The study of complex digital images 

using statistical operators" and of the scientific reports supported during the training period, I 

set out and achieved the following major objectives: 

 

-Planning and organizing the database that will contain neuro-MRI images of healthy patients 

and those diagnosed with degenerative brain diseases. This objective was achieved throughout 

the five chapters, in which the personal contributions focused on the processing of three types 

of MRI images, which according to the scan parameters values are classified into: PDw (proton 

density), T1w weighted and T2w. The images used were provided by a series of patients 

diagnosed with various brain disorders (multiple hemorrhagic areas in the left temporal lobe, in 

remission; ischemic stroke in the background; MR appearance suggestive of left cerebral-fronto-

parietal abscess; malignancy) of the brain; suggestive MRI appearance for hemorrhagic stroke 

in the chronic right parietal stage; demyelinating lesions in the bilateral periventricular and 

subcortical-supra-tensorial white matter, small cerebellar right hemisphere-hemispheric lesion; 

cerebral atrophy)  

-Restoring images acquired using MRI scanners and avoiding the degradation of useful features 

due to artifacts.  

- Improving the quality of these images by using filters, respectively by wavelets techniques,- 

- Highlighting regions of interest (ROIs) of different sizes or entire regions such as the occipital, 

temporal, parietal lobes thus chosen from certain restrictions of the diffusion related to 

cellularity.   

- Partial or total analysis of complex images by segmenting the image. 

-Characterization of textures using descriptors extracted from the image histogram or 

descriptors of the co-occurrence matrix. 

-Segmentation of complex images with modern techniques represented in this work by efficient 

segmentation algorithms optimized to minimum complexities. 

-Testing and validating the chosen textural methods and models. In the last stage of each model 

from its own contributions, statistical data are analyzed and calculated by which the correlated 

models are verified, being provided with testing and evaluation methods. 
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Thesis structure  

 

The doctoral thesis entitled "The Study of Complex Digital Images Using Statistical Operators" 

was organized in 5 chapters, to which the introduction, general conclusions and future directions 

of the study were added. 

 

           The introduction presents a description of the evolution of medical imaging, as a branch of 

the field of imaging, and lists the operations for processing, preprocessing and segmentation of 

images acquired from MRI scanners. 

Chapter I describes the basic principles of magnetic resonance imaging, how to measure 

the water molecule diffusion in MRI magnetic resonance imaging, describes advanced DTI 

measurements and analyzes and finally lists the types of NMR images. 

Chapter 2 presents the complex MRI images, their mathematical representation, their 

classification according to accuracy, and lists the types of images used in the thesis. 

Chapter 3, entitled "Improvement of complex digital images", describes the steps of the 

processing operation, the disturbing elements in the digital images as well as the methods for 

improving the digital images, defining a series of quality descriptors. 

Chapter 4, called "Anatomical-structural asymmetry and textural anisotropy of the brain" 

defines theoretical notions such as quality and similarity metrics, histogram difference, entropy, 

SSIM and FSIM indices, non-local filter means NLM, CM co-occurrence matrix, wavelet Morlet 

WM, Hessian operators. The chapter is supplemented by personal contributions in the study of 

structural asymmetry based on histogram analysis and similarity metrics, Characterization of brain 

structures from MRI images based on similarity studies and entropy, methods of investigating 

textural anisotropy in degenerative brain diseases, pattern mixing Gaussian (GMM) for 

characterizing the texture of cerebral DTI images. 

           Chapter 5, focused on weighted diffusion imaging and tensor diffusion imaging, describes 

notions such as diffusion anisotropy measures, three-phase graphical representation (3P), 

detectability index, extension method of the series and is supplemented by personal contributions 

in studies on the coefficient of diffusion. apparent diffusion of water into brain tissues, magnetic 

field gradients, diffusion maps, and parameters associated with the diffusion tensor as well as 

non-Gaussian diffusion into brain tissues. 

Finally, the conclusions of the paper and future research directions are presented. 
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Chapter I 

Basic principles of magnetic resonance imaging 

1.1 The role of diffusion in imaging 

Magnetic resonance imaging is a non-invasive medical imaging technique that uses 

strong magnetic fields and magnetic field gradients to reconstruct images of the human body. 

MRI data are usually acquired using echo planar imaging (EPI) technology, which uses pulse 

sequences to generate an imaging cycle consisting of the excitation sequence and the 

relaxation sequence. One of the types of NMR sequences is the one called Spin-Echo, based 

on a spin-echo sequence of gradient impulses. 

By using magnetic pulses with certain well-established frequencies (Larmor frequency, 

resonance frequency), the orientation of the spines can be influenced and modified (figure 1.1). 

All these differences detected in the orientation or phase of the spines of the component 

particles of the tissues, allow the reconstruction in NMR images of the human body. 

 

Figure 1.1. Interaction proton-magnetic field b0 

1.2 Diffusion of water molecule measurement in magnetic resonance imaging MRI 

DTI is one of many magnetic resonance imaging (MRI) imaging procedures for signal 

detection. Within the DTI, the intensity of the measured NMR signal depends on the distance and 

the direction of movement of the water molecule in an image volume element (called voxel), in a 

manner directed by the stored thermal energy, which was initially described by Brown [1]. Thus, in 

the "Brownian motion", a water molecule moves in a certain environment to a certain point, at a 

time and at a random speed, unless the movement is limited by the barriers present in the tissues 

(Figure 1.2 ). 
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Figure 1.2 Brownian motion of a water molecule. The net displacement is from the blue point to 

the red point. In the case of small diffusion times (1), 1 <2 <3 , the diffusion volume is 

compact. The diffusion volume increases with the increase of the diffusion times (3)  

The DTI uses a "spin-echo" pulse sequence for signal detection, described in Figure 1.3 

[2]. The spin-echo sequence has a waiting time TE / 2. The following spin-echo sequence 

produces a second electromagnetic impulse at the TE / 2 moment and has the effect of reversing 

the loss of coherence between signals that occurred during the TE / 2 period. 

Signal detection 

 

Diffusion Sensitizing 

gradient  

 

 

Radiofrequency 

transmitter 

 

Time 

Figure 1.3 Key elements of the spin-echo pulse sequence used for DTI. The timing of off-on 

(0/1) events for the three most important MRI scanner subsystems (Radiofrequency transmitter 

Diffusion Sensitiying Gradient and signal detection). 
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1.3 DTI advanced measurements and analysis  

 In the mature human brain, white matter WM is the one that produces easily measurable 

directional effects. A conceptual diagram illustrating WTI's DTI principles is shown in Figure 1.4. 

The colored lines in this figure simulate the random movements of a group of water molecules 

while moving from the same point in space. In WM, the most important internal barriers are the 

axonal membranes. Figure 1.4 shows how the WM diffusion coefficient parallel to the axonal 

matrix is equal to the GM diffusion coefficient measured in either direction. 

The diffusion in CSF and GM structures is isotropic and in WM anisotropic. However, there 

are studies that report conflicting results, especially when tissues containing non-myelinated 

young axons have been studied. 

Gradient direction 

 

MR signal level 

 

 

 

Gradient direction 

 

MR signal level 

 

 

Figure 1.4 DTI concept diagram. The middle panel illustrates water molecule diffusion 

trajectories in CSF, white matter and gray matter. The top and bottom panel illustrate the effect 

of gradient sensitizing direction on MRI signal intensity from these tissue regions. 

 

A complete spatial encoding of the signal of the magnetic field gradient on the three 

orthogonal axes Ox, Oy, Oz of the diffusion tensor D is expressed as follows: 

xx xy xz

yx yy yz

zx zy zz

D D D

D D D D

D D D

 
 

  
 
 

        (1.1) 
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D is usually assumed to be a diagonally symmetric matrix ( Dij=Dji, i,j=1,3)  and therefore 

only 6 of the 9 elements are unique. If the values of the 6 tensor terms are known, it is possible 

to calculate the value of the diffusion coefficient in any arbitrary direction in space. 

xx xy xz

xy yy yz

xz yz zz

D D D

D D D D

D D D

 
 

  
 
 

        (1.2) 

The eigenvalues are just the directionally specific Einstein-Smoluchowski diffusion 

coefficient in the direction specified by their corresponding eigenvector. The eigenvalues are 

usually given the symbol λ and are usually referred to asn λ1, λ2, λ3, with λ1 being the principal 

eigenvalue which is larger than λ2 and λ3. For WM it is sometimes assumed that λ2 equals λ3 

and the diffusion is said to display „axial symmetry‟. Images that convey the value of the 

diffusion coefficients (equivalent to the eigenvalues) are sometimes presented in DTI studies. 

These may be images of λ1, λ2 and λ3 or images of Mean Diffusivity (MD): 

 1 2 3

1

3
MD               (1.3) 

The Axial Diffusivity (AD) or  is: 

AD= 1            (1.4) 

Radial Diffusivity (RD) or  is: 

  2 3

1

2
RD             (1.5) 

These last two sizes are not independent of MD, because: 

          (1.6) 

In some cases Tr(D) is used instead of MD because the trace of the diffusion tensor is 

equivalent to the sum of the eigenvalues. This is a measure of the diffusion size and is 

invariable by rotation. 

1 2 3( )Tr D               (1.7) 
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In addition to λ1, λ2, λ3, MD and RD, a simple summary image can be formed of the 

„Fractional Anisotropy‟ (FA) (Basser et al. [18]). 

        (1.8) 

Another size independent of the existence of a gradient is the apparent diffusion 

coefficient (ADC), which is the average of the diffusion coefficients measured in the x, y and z 

directions, specific to the RMN scanner. ADC characterizes water diffusion at the cellular level, 

using the proportionality of the signal intensity and the diffusion coefficient, and collects 

information on the cellularity of the tissues and the integrity of the cell membranes. 

It is also possible to form a colorized image that helps to convey the direction of the 

principal eigenvector (Pajevic et al. [42]). 

Figure 1.5 provides one such example in the DTI called "ColorMap", (CM) in which the 

red-green-blue color system shows the directions of its own vectors. 

 

Figura 1.5 Three-dimensional volume renderings of DTI CM. Left lateral, frontal and cranial 

views are provided. The red color indicates the left-right direction, the anterior-posterior green 

direction and the upper-inferior blue color. 

 

1.4 MRI image types 

Depending on the scan parameters (for example TR = repetition time, TE = echo time),  

the values are classified into:  

-PDw (TR long / TE short) 

-weighted T1w (TR short / TE short) 

-weighted T2w (TR long / TE long) 
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Chapter II 

MRI complex images 

Digital images are an artificial representation of real images. Castleman et al. [4] classify 

the images, according to the acquisition principle, as follows: 

- abstract images, obtained by mathematical modeling;  

- visible images, obtained by photography techniques; 

- non-visible images, obtained by X-ray, ultrasound, magnetic or nuclear resonance, etc.  

2.1 Representation of digital images 

 The images represent two-dimensional signals that reflect the gray level in the point of 

coordinates x and y. A two-dimensional image can be expressed as a continuous or discreet 

pattern [5]. Temporal discretization is called sampling and discretization in amplitude is called 

quantization. By sampling and quantization, the transition from continuous to the discrete 

domain is realized:  

1) Sampling is defined as retriving the intensity and color informations from the image in points 

on a sampling grid [6]: 

 

2) Quantisation is a process of transforming the value of a function f(x,y) into discrete values.  

 Digital images are made up of image elements called pixels. The types of images used 

in this study are: 

- binary images, (figure 2.2) are represented by a logical array where each pixel is represented 

on one bit;  

- in the grayscale images (figure 2.1) the pixel values are the result of the illumination intensity 

[7, 8].  

- RGB images (figure 2.3), where each pixel is represented by three values in RGB space with 

values between [0, 65535] or [0,1] (figure 2.4).  

- in the indexed images the value of each pixel is an index which encodes the color of that pixel. 

- 3D digital images or volumetric images (Figure 2.5) are obtained from a series of 2D digital 

images, in a series of parallel planes. 
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Figure 2.1 Representation of a grayscale image. 

  

Figure 2.2 Representation of a binary image. 

  

 

Figure 2.3 RGB color image representation. 

  

Figure 2.4 Representation of a "double" color image. 
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Figure 2.5 3D digital image of the brain  

2.2 Types of images  

 In the research activity of my doctoral thesis I analyzed types of images such as: joint 

photographic experts group (.jpeg, .jpg), tagged image file format (.tif, .tiff), portable network 

grafics (.png), windows bitmap (bmp), Graphic Interchange Format (.GIF) as well as complex 

images such as Digital Imaging and Communications in Medicine (.DICOM) and the 

Neuroimaging Informatics Technology Initiative (.NifTi). 

 DICOM images are commonly used as a standard for data communication in medicine. 

They store a range of information about the patient, about the acquisition device, pixel / voxel 

size, gray level values, etc. as in figure 2.6. 

 

Figure 2.6 Information provided by a DICOM image. 

There are two components in a DICOM image, the first is the image and the second is 

the header (figure 2.6).  
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Chapter III 

Quality enhancement of the complex digital images 

3.1 Stages of the processing operations: 

-acquisition of digital images 

-pre-processing 

-the image texture analysis 

-the segmentation 

-the description, recognition, classification and selection of the objects properties  

3.2 Artifacts in digital images 

The acquired images are, in most cases, affected by noise. Noise can also occur as a result of 

image transmission and compression errors and its elimination is necessary before the images 

are analyzed.[6, 10]. 

3.3 Metods of improving a digital image 

- additive noise is mathematically described by the relation [11-13]: 

         (3.1) 

- multiplicative noise is described by:  

         (3.2) 

where f(x,y) it's the original image, η(x,y) is the noise and g(x,y) is the image affected by noise. 

- "salt and pepper" type noise. [12] 

 

 Figure 3.1 shows the effect of different types of noise on a DICOM image. 

   

 

 (a) The original image (b) Image with salt and 

pepper noise 

(c) Image with impulse noise 

Figure 3.1 
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3.4 Quality descriptors  

Segmentation performance and image quality are performed with metrics expressed by: mean 

square error (MSE), peak signal-to-noise ratio (PSNR), correlation coefficient (CoC), signal-to-

noise ratio (SNR), structural content (SC) contrast-noise ratio (CNR) and average Difference 

(AD),  

3.4.1 Mean square error: MSE is used to evaluate an image affected by noise, as a whole, 

 ,g i j compared to the original image,  ,f i j : 

    
1 1

2

0 0

1
, ,

N M

i j

MSE g i j f i j
N M

 

 

 

       (3.6) 

3.4.2 Peak signal-to-noise ratio: PSNR consider only the maximum possible value of the 
signal in the initial image f (i, j), without further evaluating the signal variation in that image: 

 

2

,

1 1

0 0

max ( , )

10log

( , ) ( , )

i j

N M

i j

N M f i j

PSNR

g i j f i j
 

 

 
  

 



      (dB)    (3.7) 

3.4.3 Normalized cross-correlation: NCC offers the proximity between two digital images 

ensuring the degree of similarity or proximity between two images: 

       (3.8) 

3.4.4 Correlation coefficient (CoC): The degree of adjustment or CoC is described by: 

     2 2
mn mn mn mn

m n m n

CoC f f g g f f g g
   

       
   
     (3.9) 

where f and g  are the average values of the image, mnf  , mng  images with the same size [44]. 

3.4.5 Structural content,  SC is a measure based on correlation and is given by : 

          (3.10) 

3.4.6 Average Difference, AD indicates the average of the difference between the analyzed 
images: 

    
1 1

0 0

1
, ,

N M

i j

AD g i j f i j
N M

 

 

 



       (3.11)
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Capter IV 

Anatomical-structural asymmetry and textural anisotropy of the brain 

4.1 Quality and similarity metrics used in the analysis of anatomical-structural 

asymmetry 

The values of the similarity metrics depend on the bi-lateral symmetry of the brain. In 

order to better highlight these brain hemisphere differences, some similarity metrics were 

computed: PSNR, MSE, NMAE, NCC, SC and AD.  

4.2 Personal contributions 

4.2.1 Structural brain asymmetry evaluated by histogram analysis and similarity metrics 

The existence of structural asymmetry acts as a biomarker for the neuroanatomical 

disorders or abnormal brain functional organization. The development of a method based on 

histograms subtraction to highlight brain asymmetry using Diffusion-Weighted Magnetic 

Resonance Imaging (DW-MRI) may provide useful tools for differentiating between healthy and 

diseased subjects [16]. 

4.2.1.1 Histogram subtraction 

 

The histogram difference of the left and right spitted hemispheres allows one to 

determine the distribution of the asymmetry. To obtain the left and right hemispheres, the 

localization of the mid-sagittal plane (MSP) is required. In order to find the sagittal axis, we 

maximized the location probability of the longitudinal fissure based on textural similarity analysis 

[17]. In this step, only intensity information is taken into account. It enhances the information 

about the changes in imaging conditions. After the histograms were created, a subtraction 

algorithm is used in order to obtain the difference of all pixel values at different bins. A 

normalized histogram of an image is defined as: 

( ) , 0,255i
A

n
h i i

n
          (4.1) 

where  is the number of pixels with gray level i and n is the total number of pixels in the image. 

The subtraction result of two image histograms A and B is: 

( ( ) ( ))A Bi
diff h i h i         (4.2) 

In order to quantify the differences, a subtraction algorithm between left and right brain 

histograms is used. Also, the following similarity indexes were computed: mean square error, 

peak signal to noise ratio, normalized cross correlation, average difference, structural content, 

and normalize absolute error.  
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The current study is carried out on 40 images from four subjects and for three b-values:  

0, 500 and 1000 , . Here,   is the attenuation factor and weights the diffusion.  

Images denoted s1 belong to a healthy patient. Those denoted s2 belong to a patient 

with multiple intracerebral hemorrhages within the left temporal lobe; s3 with ischemic brain; and 

s4 is a subject with left frontoparietal brain abscess. 

. Table 4.1 displays the quantitative results of the similarity metrics computed between 

left and right hemispheres of the brain. The quality values of these metrics are presented in 

table 4.2 

Table 4.1 The similarity metrics computed between left and right hemispheres of the brain. 

 
b=0 b=500 b=1000 

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 

MSE 1.451
 

1.731
 

0.770
 

0.462
 

1.609
 

1.2452
 

1.544
 

0.476
 

1.506
 

1.591
 

1.827
 

0.877
 

PSNR 6.512 5.747 9.260 11.483 6.065 7.1784 6.238 11.358 6.354 5.1125 5.515 8.700 

NCC 0.371 0.239 0.210 0.280 0.386 0.2590 0.198 0.297 0.374 0.2397 0.272 0.335 

AD -4.358 16.150 -2.639 -8.046 3.907 0.564 -4.049 -5.674 0.134 14.6341 9.942 -11.413 

SC 0.944 1.269 0.929 0.682 1.050 1.0117 0.926 0.737 0.999 1.2436 1.071 0.668 

NMAE 1.364 1.350 1.659 1.767 1.225 1.5108 1.712 1.627 1.293 1.3553 1.441 1.649 

 

Table 4.2 The quality values of the similarity metrics. 

Similarity metrics Quality values 

MSE 0 

PSNR higher 

NCC [-1, +1] 

AD 0 

SC 1 

NAE 0 

 

Table 4.1 shows significant differences between normal brain structures and various 

intracranial pathologies: 

-PSN decreased with increasing b-value for all analyzed cases.  

-Small NCC values indicate dissimilarity between brain hemispheres. The data reported in table 

1 show differences between classes but also show an intra-class variation when the b-values 

increased (resulted images are brighter). 
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According to data in Table 4.3, for a normal brain a slight difference between the right 

and left hemispheres exists. This result indicates that the images from the healthy subject are, 

in a certain amount, degraded. One can interpret these differences in the light of the distortions 

during acquisition and processing. However, there is not much variation in the histogram-based 

intensity for subject s1, so we can expect that the histogram differences (as average intensity 

subtraction) could act as main tool in determining the „aberrations‟ introduced by various 

diseases.  

Table 4.3 Left and right hemispheres and histogram difference for s1 

b[s/mm2] Right hemisphere Left hemisphere Histogram difference 

b=0 

   

b=500 

   

b=1000 

   

 

Tables 4.4-4.6 show histogram differences for three diseases. The existing asymmetry 

increases the absolute difference due to the distortion of the gray level intensity. The differences 

between histograms are declared if the absolute differences of the gray level intensity between 

left and right hemispheres is greater than the threshold T = 126. This threshold value was 

obtained using Otsu‟s thresholding algorithm. 
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Table 4.4 Left and right hemispheres and histogram difference for s2 

b[s/mm2] Right hemisphere Left hemisphere Histogram difference 

b=0 

   

b=500 

   

b=1000 

   

 

Table 4.5 Left and right hemispheres and histogram difference for s3. 

b[s/mm2] Right hemisphere Left hemisphere Histogram difference 

b=0 

  
 

b=500 

  
 

b=1000 
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Table 4.6 Left and right hemispheres and histogram difference for s4 

b[s/mm2] Right hemisphere Left hemisphere Histogram difference 

b=0 

  
 

b=500 

  
 

b=1000 

  
 

 

The data reported in this section were published in [45] L. Moraru, L. T. Dimitrievici, V. A. 

Moraru, Structural brain asymmetry evaluated by histogram analysis and similarity metrics, 

Annals Of “Dunarea De Jos” University Of Galati Mathematics, Physics, Theoretical Mechanics 

Fascicle II, Year VIII (XXXIX), No. 1, pp 13-19, 2016. 

4.2.2 Entropic characterization of random cerebral structures in MR images using 

structural similarity studies 

The analysis of pixel distribution offers a perspective on the changes existing in the level 

of the microstructure of the brain tissue. The purpose of the research was to correlate the 

perturbation / disorder of the pixels at the micro and macroscopic level with the type of image 

and the type of disease. The quantification of the degree of disorder in brain microstructures can 

be estimated by texture analysis [18]. 

 FSIM and SSIM indices can detect relatively similar / non-similar patterns in brain MRI 

images, using spatial inhomogeneity and spatial statistical complexity of gray tones, from 

images. 
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4.2.2.1 SSIM and FSIM  

 Two images I and J are characterized by the mean JI  , , variance 22 , JI   and 

covariance IJ . The luminance  JIl , , contrast  JIc , , and structural  JIs ,   similarity components 

are defined as :  
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     (4.3) 

where C1, C2 and C3 are small constants used to avoid an indeterminate form (if  denominators  

approached 0). The positive parameter ,  and  are used to adjust the relative importance of 

the components and the SSIM index is defined as [18]: 

          
JIsJIcJIlJISSIM ,,,,          (4.4) 

For FSIM calculation are determined PC (The phase congruency feature which is contrast 

invariant) and G (gradient magnitude which encodes contrast information ) for both images I and 

J for a location x. The similarity measures for phase congruency and gradient magnitude are 

defined as [19]: 
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     (4.5) 

FSIM index is given by [76]: 

   
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
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x mL
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         (4.6) 

4.2.2.2 The entropy 

Entropy is a statistical measure of randomness that can be used to characterize the texture 

of the image. Entropy, as a local morphological descriptor systematically characterizes the 

random microstructures. For a 2D grey image having N pixels (discretized into scale from 0 to 

255 intensity levels), and hi(i)  being the normalized histogram image, the image entropy is 

given by [19-20]: 

     ihNihIH I
i

I log
         (4.7) 

The dataset consists of stacks of PDw brain MR images which were freely downloaded 

from the website of Harvard Medical School. The abnormal brain MR images consist of the 

following diseases: Alzheimer‟s disease, Pick's disease, and cerebral calcinosis. The samples of 

each image type and disease are illustrated in Figure 4.1: 
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                     (a1)                                (a2)                                 (a3)                 

       
                     (b1)                                (b2)                                 (b3)                 

       
                     (c1)                                (c2)                                 (c3)                  

Figure 4.1 The images represent: (a) Alzheimer‟s disease; (b) Pick‟s disease; (c) Cerebral 

calcinosis disease. Columns: (1) - T1w images; (2) T2w images; (3) PDw images of a figure 

caption. 

 

The colour imaging system red, green and blue (RGB) is used to check and highlight the 

existing differences at microstructural level between two successive images. 

However, it is possible to ignore one of the channels of information because the data 

size is drastically reduced and the processing time is improved. The R and G channels are 

suitable for our goal. The B channel has been ignored in our analysis. The results are provided 

in a three steeps sequence: 

(1) The differences between two consecutive images of chosen neurodegenerative diseases, 

in a colour approach have been made in figure 4.2. Figures denoted with (c) illustrate the existing 

differences at microscopic level in cerebral structures by using the R and G channels from RGB 

colour model. The similar areas appear yellow. The number of pixels varies from one image to 

the next one. 

Figures 4.3 and 4.4 show the variation of the number of pixels that do not overlap 

depending on the R and G channels. The number of pixels that do not overlap decreases as the 

index of image pairs increases. Images denoted c1, c2 and c3 are RGB composite images that 

show differences between pixels (for red and green channels) in images 4.3 and 4.4. 
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(a1)                                    (b1)                                       (c1) 

   
(a2)                                   (b2)                                      (c2) 

   
(a3)                                   (b3)                                  (c3)  

Figure 4.2 Colour comparison between two T2w consecutive images (the first and second 

columns); (a) PDis; (b) ADis; (c) CCDis. The similar areas appear yellow.  

 

Figure 4.3 The evolution of the number of non-overlapping pixels belonging to the R 

channel 

 

Figure 4.4 The evolution of the number of non-overlapping pixels belonging to the G 

channel  
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Table 4.7 average values of the entropy for neurogenerative diseases 

 Alzheimer’s disease Cerebral calciosis disease Pick’s disease 

PDw 3.928 (±0.490) 3.840 (±0.495) 3.534 (±0.481) 

T1w 3.181 (±0.507) 3.411 (±0.492) 3.031 (±0.504) 

T2w 2.399 (±0.249) 3.676 (±0.491) 2.294 (±0.400) 

 

 (2) The entropy values corresponding to the image stack associated with each disease 

are calculated. The average values of the entropy results are presented in table 4.7. 

 (3) A similarity study is performed from successive pair images using SSIM and FSIM. 

The results are shown in Figure 4.5.  

 

In the composite image presented in figures 4.2c, the yellow areas indicate the same 

intensities in the input images. The dissimilar pixels are labeled with red and green and show 

those areas where the pixel intensities are different. This comparison reveals that the 

microstructural differences between arrangements of white and grey pixels yield a higher 

compositional inhomogeneity. For each image type and neurodegenerative disease, the number 

of non-overlapping pixels was established, for both the R and G channels (see Figures 4.3 and 

4.4). The number of non-overlapping pixels (quantified by the area of a microscopic region where 

structural differences exist) shows a clear trend; it decreases towards increasing the index of the 

image pairs.  

The smallest area is occupied by pixels belonging to the R channel in the case of T2w-

PDis, and the biggest area is occupied by pixels belonging to the G channel for T2w-CCDis. 

Hence, we can preliminary conclude that the microstructural morphology is heterogeneous and 

clearly varies from case to case. In the case of T1w images, the dissimilarity degree is the 

smallest because the differences of local contrast between grey and white matter are not 

important. For T2w images, the local contrast increases for cerebrospinal fluid area and, 

accordingly, the SSIM values increase. SSIM takes values in the range [0.85; 0.93] for CCDis, 

[0.66; 0.89] for ADis and [0.69; 0.87] for PDis, respectively. 

FSIM also confirms the existing dissimilarity in the sequence from the stack of  images 

(Fig. 4.5, right column). Generally, the FSIM shows the same evolution as SSIM. Few exceptions 

exist for T1w and T2w images when FSIM values overlap the SSIM values. FSIM takes values in 

the range [0.68; 0.82] for CCDis, [0.57; 0.74] for ADis and [0.54; 0.75] for PDis, respectively. 

 The values of the SSIM (left column) for PDw images are higher than those of T1w and 

T2w images for all diseases.Also, the degree of the dissimilarity increases for the last pairs of 

images in the stack. 
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Figure 4.5 The dissimilarity index values of paired images for various degenerative 

diseases. Left column: SSIM. Right column: FSIM.  

The entropy as a measure of information is closely related to the grey level distribution 

and its estimation is based on probability distributions of the intensities of pixels and on the 

locally spatial similarity of pixel intensities within neighborhoods. The higher entropy values for 

PDw images (Table 1) express that this disease introduces the higher disorder at microscopic 

level reflecting the pixels‟ disorder. Also, entropy provides information on how homogeneous a 

class is, because it tends to zero when all pixels belong to the same class, i.e. have the same 

grey level. In this case, Pick's disease has the most homogeneous structure, and the cerebral 

calcification disease has a heterogeneous microstructure. 
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4.2.3 Texture anisotropy methods in brain degenerative diseases investigation  

In this study the investigated area is reduced from the whole brain surface to three major 

lobes (i.e. frontal, temporal and parietal). [27]. A database containing 105 brain two-dimensional 

MR images was included in the proposed work. The acquired images were T2w and PD (proton 

density) sequences that belong to the Harvard Medical School database, which are available at 

[25]. The existing study included 28 images of healthy patients (as control group), and 77 MR 

images (29 AD patients, 24 PD patients, and 24 CC patients). 

The cerebral calcinosis (CC) is characterized by abnormal deposits of calcium in certain 

areas of the brain (mostly in the FL, TL and PL) and may include similar clinical symptoms with 

the AD and PD. Unlike AD and PD, the CC does not manifest atrophy, but induces signal 

intensity alteration.  

 The proposed statistical model avoids „the human ground truth‟ based on human 

understanding of topographical and morphological imaging changes or experience of clinical 

symptoms. Thus, in the proposed model, for model evaluation free of human biases, the CC 

represented an artificial ground truth, and its relevance is used. For statistical analysis, the 

database was organized into the following classes: healthy patients (H), Alzheimer (A), Pick (P) 

and cerebral calcinosis (CC). 

4.2.3.1 Non-local means filter (NLM)  

The non-local means (NLM) filter reduces the noise without damaging textures and fine 

structures. Furthermore, it calculates the mean of all pixels in the image. In addition, it weights 

those pixels that exceed the calculated mean value and removes the Rician noise 

4.2.3.2 Co-occurence matrix CM describe the spatial complexity of the images and the 

variation in directions for pixel pairs[23] 

4.2.3.3 Morlet Wavelet transform (WM) belongs to the class of directional wavelet and is used 

to test the existence of anisotropy, because it can detect the uneven changes in the texture of 

the images. [24]. 

4.2.3.4 Hessian operators  

A structure tensor in a two-dimensional (2D) image representation is defined using a 2  2 

Hessian matrix [27]: 
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(4.11) 

4.2.3.5 Statistical analysis 

The proposed statistical model involves the following steps: 
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Start 

Remove the Rician noise by using the NLM filter 

Segment the skull stripping  

Use the irrational mask method for segmentation 

Assess the skull-stripping method performance by means of the Dice coefficient 

Analyze the texture anisotropy based on the CM and the WM 

Compute the TA of the whole brain and major lobes, respectively. 

Assess the statistical significance of anisotropy values for the analyzed classes at a specified 
localization.  

Use the paired t-test to determine whether the mean of the texture anisotropy differences is 
statistically significant.  

Calculate the Pearson’s correlations coefficient for the effect of TA and clinical status by applying 
the association analysis.  

Obtain the model output that contains only those significant classes that have the ability to reduce 
the area of analysis from the whole brain surface to the major lobes.  

Address the consistency index to summarize the relevance of the texture anisotropy analysis over 
its range of values for all analyzed classes, all image types and all analyzed areas.  

Evaluate the proposed method via unbiased assessment of the model 

End          

The information on texture anisotropy provided by the CM is supplemented by those 

provided by the MW based on the variation in directions for pixel pairs (CM), and for a chosen 

orientation (MW). 

The data for homogeneity, correlation and energy features is summarized in Figure 4.6 

showing not classes with the zero TA variation. The texture of the brain MR images has an 

anisotropic character. By comparing the range of TA variation for each feature, image type, and 

pathology higher variation for the T2w images than for PD images is obtained. In addition, a 

major difference in TA associated with investigated area exists 

For class Ad, the energy and correlation overall results indicate that the texture is 

strongly inhomogeneous and contains various discontinuities such as edges. These directional 

attributes of the CM suggest that anisotropy could be a marker of increased cerebral atrophy 

and of disease progression.  
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Figure 4.6 Range of variation for correlation, energy and homogeneity computed using 

CM and MW for PD and T2w images 

 

According to data in Table 4.8, it is established that in WB and TL the anisotropy is 

higher (corresponding to less ordered texture) than in FL and PL.  

Table 4.8. Multivariate analysis between disease classes and ROI based on the anisotropy 

showing the correlation intensity 

WB FL TL PL 

PDw T2w PDw T2w PDw T2w PDw T2w 

H-A H-A H-A H-A** H-A H-A H-A H-A 

H-P H-P H-P** H-P H-P* H-P H-P H-P* 

H-CC** H-CC* H-CC H-CC* H-CC H-CC H-CC H-CC 

A-P A-P A-P A-P A-P A-P A-P** A-P 

A-CC** A-CC A-CC A-CC** A-CC* A-CC A-CC A-CC** 

P-CC** P-CC** P-CC P-CC P-CC P-CC** P-CC P-CC 

(*) moderately strong correlation and VIF < 5 

(**) very strong correlation and VIF > 5 (are not used in the proposed model) 

 

The average values of anisotropy and their standard deviations are illustrated in the Table 4.9. 
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Table 4.9 Average anisotropy (  standard deviation) values for each image type and 
investigated areas 

 

During the second step of the decision process, the accuracy of the selection has been 

estimated using the consistency index (Figure 4.7). It demonstrates the relevance of the 

selected variables by the proposed model. 

 

Classes 

Investigated area 

Image type WB FL TL PL 

Ad 

PDw 0,453( 0,190) 0,159( 0,089) 0,505( 0,168) 0,316( 0,157) 

T2w 0,178( 0,195) 0,174( 0,084) 0,380( 0,155) 0,280( 0,149) 

CCd 

PDw 0,407( 0,177) 0,261( 0,170) 0,550( 0,209) 0,226( 0,127) 

T2w 0,216 ( 0,097) 0,258 ( 0,170) 0,445( 0,098) 0,188( 0,099) 

Pd 

PDw 0,372( 0,116) 0,230( 0,109) 0,503( 0,127) 0,191( 0,089) 

T2w 0,167  (0,089) 0,118( 0,043) 0,408( 0,106) 0,160( 0,053) 

H 

PDw 0,054( 0,026) 0,175 ( 0,031) 0,525( 0,134) 0,118( 0,051) 

T2w 0,055( 0,026) 0,139( 0,065) 0,415( 0,106) 0,180( 0,072) 
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Figure 4.7 Consistency index: (a) PD images; (b) T2w images.  

Table 4.10 demonstrates that the training dataset provides higher AUC values, while the 

AUC for validation data set were lower. The Ad and Pd diseases have the highest AUC among 

the classes tested. The training step is the prerequisite to any decision to undertake a between-

diseases classification test or to discriminate the true state of patients. 

Table 4.10 Area under the ROC curve (The highlighted values indicate the cases where 

anisotropy is unable to distinguish between classes) 

Diseases 

WB FL TL PL 

PDw T2w PDw T2w PDw T2w PDw T2w 

Ad training 0.852b) 0.859b) 0.874 b) 0.911 a) 0.890 b) 0.812 b) 0.606 d) 0.909 a) 

Ad validation 0.802b) 0.810b) 0.813 b) 0.877 b) 0.853 b) 0.780 c) 0.585 f) 0.883 b) 

Pd training 0.598 f) 0.482 f) 0.880 b) 0.608 d) 0.753 c) 0.866 b) 0.727 c) 0.784 c) 

Pd validation 0.537 f) 0.457 f) 0.833 b) 0.563 f) 0.707 c) 0.822 b) 0.690 d) 0.733 c) 

CCd training 0.245f) 0.222 f) 0.176 f) 0.329 f) 0.204 f) 0.198 f) 0.346 f) 0.377 f) 

CCd validation 0.223f) 0.205 f) 0.153 f) 0.313 f) 0.190 f) 0.183 f) 0.328 f) 0.357 f) 

H training 0.786 c) 00.79 c) 0.873 b) 0.804 b) 0.744 c) 0.688 d) 0.940 a) 0.785 c) 

H validation 0.737 c) 0.745 c) 0.817 b) 0.747 c) 0.697 d) 0.650 d) 0.890 b) 0.730 c) 

a) 0.90-1 = excellent, b) 0.80-0.90 = very good c) 0.70-0.80 = good, d) 0.60-0.70 = fair, f) 0-0.60 = fail. 



Lucian Traian DIMITRIEVICI Study of complex digital images using statistical operators 

35 
 

Table 4.11 summarizes the sensitivity and specificity values computed from the cut-off 

values of the ROC. The sensitivity is the proportion of patients with a diagnosed brain disease 

who are correctly identified by anisotropy. The specificity refers to the ability of the texture 

anisotropy to correctly identify negative among those patients without the disease 

According to the recommendations in [38], sensitivity higher than 80 is required % for 

detecting the targeted disease, in addition higher specificity of 80% is necessary for 

distinguishing other dementias. The cut-off values were selected for the range of sensitivity of 

clinical importance (i.e. between 90% and 100%).  

Table 4.11 Sensitivity and Specificity values of the proposed model (95% confidence interval) 

Diseases 

FL TL PL 

PDw T2w PDw T2w PDw T2w 

Ad (0,91; 0,80) (0.90; 0.82) (0.90; 0.82) (0.91; 0.67) (0.84; 0.67) (0.89; 0.87) 

Pd (0.93; 0.81) (0.81; 0.37) (0.86; 0.69) (0.88; 0.71) (0,84; 0.67) (0.80; 0.79) 

H (0.92; 0.82) (0.91; 0.79) (0.94; 0.86) (0.90; 0.73) (0.88; 0.79) (0.91; 0.81) 

 

Alzheimer‟s disease shows the highest sensitivity (> 90%) for both FL and TL for both 

image types. Also, PL and T2w image has almost the same sensitivity. Pick‟s disease has 

sensitivity from 80% to 90%. The specificity is higher for Alzheimer‟s disease. This indicates that 

the proposed model is correctly report >80% patients without Alzheimer‟s disease when FL and 

TL are addressed. In the case of the Pick‟s disease, for FL/T2w, the lower values of specificity 

indicate 37% patients without P disease are incorrectly detected positive and the model ability to 

identify this disease is compromised. This instance was already removed from the proposed 

model. Overall, specificity varied between 0.69 and 0.81 over the same sensitivity range. It is 

fair enough to estimate how likely patients without disease can be correctly ruled out. 

The main challenge in the proposed model is the minimization of the analyzed brain 

area, while still achieving a high classification rate. It is a merit of the proposed model to 

statistically distinguish between Alzheimer‟s and Pick‟s diseases when basically the same types 

of imaging data are required to develop this model.  

The data reported in this study were published in [30] L. Moraru, S. Moldovanu, L. T. 

Dimitrievici, N. Dey, A. S. Ashour, Texture Anisotropy technique in Brain Degenerative 

Diseases, Neural Computing and Applications, Volume 30, Issue 5, pp1667-1677, DOI: 

10.1007/s00521-016-2777-7, september 2018. 
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4.2.4 Gaussian mixture models ( GMM) for brain DTI texture caracterization  

 A GMM is a probabilistic model based on Gaussian distribution for expressing the 

presence of sub-populations/sub-classes within an overall population/class without requiring the 

identification of the subclass of interest (observational data). 

4.2.4.1 Methodological aproach  

4.2.4.2 The GMM algoritm with m components 

The finite mixture model is based on the assumption that each finite mixture has similar 

probability distributions for each group; however, inside the group, different multivariate 

probability density distributions and different parameters are present [31,32]. 

4.2.4.3 The k-means algorithm for clustering 

The k-means algorithm is used to assess the data clustering for the selected number of 

components (m = 3) [26, 27]. Each mixture component is associated with a group or cluster 

based on identical estimated statistical parameters. 

4.2.4.4 Euclidian weighted distance and multiple correlation 

To validate the capability of the classified GMM mixtures to differentiate between different 

subjects in a hemisphere approach, the weighted Euclidean distance (wd) between two j-

dimensional vectors was used [34]: 
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    (4.15) 

where ijw  (i = 1, 2, 3 și 1,j n ) denotes the optimal mixture probability provided by k-means for 

the studied subclasses and js is the corresponding standard deviation. 

Moreover, an inter-hemisphere multiple correlation analysis between the mixing 

probabilities has been performed to characterize the association of the grey level intensities and 

contrast for the selected injured subjects and healthy subject. The multiple correlation 

coefficients between the independent variables HA and IS and the dependent variable H is 

defined as 
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       (4.16) 

Where , , ,, ,i i i
IS H HA H IS HAr r r  i = 1,2,3 are the covariance between the two random variables in each of 

the pairs IS and H, HA and H and IS and HA, respectively [35].  
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4.2.4.5 Clustering validation 

The analysis is focused on three main brain tissues (i.e., GM, WM, and CSF), and an a priori 

assumption of three-class clustering is considered. The goal is to examine whether these 

classes reflect the actual clustering structure of the data or whether this data was partitioned 

into a few artificial groups, in the context of the GMM [36]. The quality of the clustering analysis 

is addressed, and the Silhouette index and Silhouette plots are used as the validation criteria 

[38]. If compact and clearly separated clusters are obtained, the targeted tissues were 

considered well-classified. The Algorithm diagram is shown in Figure 4.8: 
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Figure 4.8 Algorithm scheme 

4.2.4.6 Image acquisition and processing 

Three subjects (age range 36–60 y; one female and two males) underwent MRI scans. A 

subject presented multiple haemorrhage areas in the left temporal lobe (male, 48 y), and 

another was with ischemic stroke in the left frontal lobe (female, 60 y, median 8-mo post-stroke); 

yet another subject was a healthy patient (male, 36 y). 

As an example, a DTI image (b = 500 s/mm2) of a healthy subject and the results of the 

GMM-classification and hemisphere segmentation are shown in Fig. 4.9. 

   

(a) (b) (c) 

Figure 4.9 DTI brain image of a healthy patient for b = 500 s/mm2. (a) skull stripping of the 

whole brain; (b) result of GMM-classification; (c) hemispheres segmentation  
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The estimated weights across the entire control group (H) and for each injured group (IS and 

HA) are presented in Table 4.12  (for the left hemisphere) and Table 4.13 (for the right 

hemisphere). The data in Tables 4.12 and 4.13 present details on the difference in the averaged 

weights or mixing probabilities between the left and right hemispheres for each subject and over 

the entire range of diffusion gradient values. 

Table 4.12 GMM average mixing probability for left hemisphere, with and without diffusion 

gradients. The data are summarized for three mixing probabilities  

(w1 for GM, w2 for WM and w3 for CSF) for H, HA and IS. 

 
1

H

j
w s  1

HA
jw s  

1

IS

j
w s  2

H

j
w s  2

HA

j
w s  

2

IS

j
w s  3

H

j
w s  3

HA

j
w s  

3

IS

j
w s  

b0 0.30±0.012 0.26 ±0.008 0.22±0.014 0.55±0.049 0.58±0.048 0.55±0.064 0.14±0.045 0.15±0.045 0.17±0.061 

b250 0.32±0.021 0.30±0.017 0.29±0.020 0.52±0.046 0.52±0.051 0.54±0.059 0.14±0.051 0.15±0.051 0.15±0.0.047 

b500 0.32±0.027 0.30±0.020 0.29±0.021 0.52±0.056 0.54±0.057 0.55±0.048 0.14±0.045 0.15±0.047 0.15±0.051 

b750 0.33±0.023 0.29±0.023 0.29±0.021 0.54±0.015 0.55±0.052 0.56±0.053 0.13±0.007 0.15±0.042 0.15±0.041 

b1000 0.32±0.021 0.29±0.020 0.29±0.019 0.52±0.048 0.55±0.053 0.55±0.058 0.14±0.050 0.15±0.052 0.15±0.048 

b1250 0.33±0.025 0.28±0.018 0.28±0.016 0.55±0.059 0.55±0.055 0.55±0.056 0.14±0.044 0.15±0.050 0.15±0.049 

 

Table 4.13 GMM average mixing probability for right hemisphere, with and without diffusion 

gradients. The data are summarized for three mixing probabilities  

(w1 for GM, w2 for WM and w3 for CSF) for H, HA and IS. 
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j
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HA

j
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3
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j
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b0 0.32±0.016 0.33±0.018 0.28±0.013 0.54±0.041 0.53±0.050 0.57±0.039 0.12±0.032 0.13±0.041 0.14±0.048 

b250 0.34±0.022 0.33±0.041 0.30±0.021 0.51±0.053 0.53±0.051 0.53±0.059 0.14±0.045 0.13±0.044 0.15±0.047 

b500 0.34±0.022 0.34±0.029 0.30±0.028 0.50±0.050 0.51±0.059 0.52±0.055 0.14±0.045 0.14±0.044 0.15±0.050 

b750 0.35±0.016 0.34±0.029 0.28±0.023 0.52±0.007 0.48±0.042 0.52±0.041 0.13±0.039 0.13±0.039 0.16±0.043 

b1000 0.33±0.018 0.33±0.029 0.30±0.029 0.51±0.054 0.51±0.060 0.53±0.055 0.14±0.044 0.14±0.045 0.15±0.047 

b1250 0.34±0.019 0.33±0.026 0.30±0.023 0.54±0.053 0.51±0.057 0.51±0.061 0.14±0.044 0.14±0.045 0.15±0.046 

For two cases (multiple haemorrhage areas in the left temporal lobe (HA) and ischemic 

stroke in the left frontal lobe (IS)), visible differences in the mixing probabilities are presented. 
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Figure 4.10 Average weighted Euclidean distances for pairs of probability density function 

distributions of mixtures probability of GMM. Estimation is performed for all the diffusion 

gradients and for each brain hemisphere. L denotes the LH, R denotes the RH. 

Figure 4.10 indicates that the proposed approach exhibits the capability to highlight the 

differences between the brain tissues in the right and left hemispheres, for each level of 

diffusion weighting and subject category.  

For the CSF class (index 3), HA and IS do not correlate significantly with H for either the 

left or right hemispheres. The results for the WM class (index 2) illustrate that for the left 

hemispheres, HA and IS are marginally correlated with H. The correlation significance increases 

by approximately 50% for the right hemispheres. For the GM class (index 1), HA and IS 

correlate well with H for the right hemisphere and do not correlate significantly with H for the left 

hemisphere. 

The average silhouette width is approximately 0.9, i.e., 90 % of the selected clusters are 

considered as the optimal number of clusters (table 4). The a priori selection of the three main 

brain tissues, or „natural determination‟, is validated and performs best with respect to the 

hemisphere approach. The thickness of cluster 2 (HA subject) is not significantly high for CSF 

and GM, in the left hemisphere. This narrow silhouette is interpreted as a spread of the point 

inside the cluster and as a slightly inadequate separation of the cluster. 

Table 4.14 Average silhouette width for evaluating clustering validity 

Clasa WB LH RH 

H 0.9176 0.935 0.9284 

HA 0.9829 0.9774 0.9326 

IS 0.9989 0.8578 0.9296 

The results of the correlation analysis, for each pair of classes, are presented in table 

4.15. The results indicate that the HA and IS classes are not correlated, because the correlation 

coefficient is close to zero. This observation leads to the following hypothesis: H is the 

dependent variable and HA and IS are not correlated and are the independent variables 
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CSF GM WM 

Figure 4.11 Silhouettes of a data set for three clusters (1 is for healthy subject, 2 for HA and 3 for IS)  

Line 1: whole brain; Line 2: right hemisphere; Line 3: left hemisphere 

 

Table 4.15 Correlation coefficients and multiple correlation coefficients.  

 

 Correlation coefficient Multiple correlation coefficient 

 
1

,HA Hr  2
,HA Hr  3

,HA Hr  1
,IS Hr  2

,IS Hr  3
,IS Hr  1

,IS HAr  2
,IS HAr  3

,IS HAr  1
( , )H IS HAR 

 2
( , )H IS HAR 

 3
( , )H IS HAR 

 

LH 0.658 -0.421 0.214 0.654 0.515 -0.612 0.214 -0.031 0.295 0.528 0.429 0.545 

RH 0.751 -0.773 0.654 0.443 0.339 0.622 0.336 -0.214 0.345 0.714 0.699 0.564 
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The results of this study were published in [37] Luminita Moraru, Simona Moldovanu, 

Lucian Traian Dimitrievici, Nilanjan Dey, Amira S. Ashour, Fuqian Shi, Simon James Fong, 

Salam Khang, Anjan Biswas, Gaussian mixture model for texture characterization with 

application to brain DTI images, Journal of Advanced Research 16 (2019) 15–23, 

https://doi.org/10.1016/j.jare.2019.01.001 

4.2.6 Conclusions 

 

-The study on the morphological asymmetry of brain tissues demonstrated the applicability of 

the method based on "histogram reduction" in differentiating brain disorders. The proposed 

method is fast and has low complexity, so it can be successfully used to efficiently process 

different brain MRI images. 

-In the study of the characterization of brain structures from MRI images, we presented the 

possible use of the correlation function between the macroscopic and microscopic pixel 

arrangement by using entropy, as a local descriptor, and the FSIM and SSIM dissimilarity 

indices, as global descriptors, for different neurodegenerative diseases. It is found that for the 

neurodegenerative diseases studied, the most disordered distribution of the pixels was detected 

in the case of CCd brain calcification. 

-The textural anisotropy of the brain structures specific to patients with Alzheimer's and Pick 

diseases and healthy subjects has been proposed as a tool capable of distinguishing between 

the two diseases. The proposed model is extremely sensitive because the area of imaging 

investigation has been reduced from the surface of the whole brain to the main cerebral lobes. 

The classification achieved had sensitivity> 90% and specificity> 80%. The development of a 

specific and sensitive anisotropic biomarker remains an active topic in future research. 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.jare.2019.01.001
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Chapter V 

Weighted diffusion imaging and tensor diffusion imaging 

5.1 The apparent diffusion coefficient of water in brain tissues 

Gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) for three different slices that 

were spaced at L = 79.8,84.9 and 90 mm  

The equation for diffusion-weighted imaging signal intensity is described by 

0/ exp( )S S b ADC             (5.1) 

where 0/S S  is the ratio of the signal with diffusion gradients(S)  to signal without diffusion 

gradients, ( 0S ),  b[s/mm2] is the attenuation factor and apparent diffusion coefficient  that varies 

for CSF and non-CSF tissues. 

The location of the ROIs cropped from different brain cellular structure in DW-MRI images is 

displayed in figure 5.1.  

 

Figure 5.1 ROI‟s locations 

 

Table 5.1 The averaged ADC values and standard deviation (SD) within each ROI for each 

slices 

 

CSF WM GM 

Slices 
ADC 

(mm
2
/s) 

SD e% 
ADC 

(mm
2
/s) 

SD e% 
ADC 

(mm
2
/s) 

SD e% 

L1 2.01 E-03 1.87 E-04 4.1 6.12 E-04 1.16 E-04 6.1 6.97 E-04 1.14 E-04 2.3 

L2 1.98 E-03 1.09 E-04 2.5 5.23 E-04 1.00 E-04 14.1 6.78 E-04 1.09 E-04 0 

L3 1.82 E-03 1.73 E-04 5.6 6.55 E-04 1.11 E-04 6 6.67 E-04 1.33 E-04 2 
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In order to overcome the influence of the b-values and to obtain information regarding 

the structure of brain tissue, CSF and the membrane permeability in healthy human brain, the 

experimental data is achieved with the following b-values: b0=0 s/mm2; b1=250 s/mm2; b2=500 

s/mm2; b3=750 s/mm2; b4=1000 s/mm2; b5=1250 s/mm2.  

The ROIs have been determined on the basis of different brain cellular structure. Their pixels 

appearance is presented in figure 5.2. The histographic characteristics of the brain ROIs in DW-

MRI for tissues difference detection were used.  

   

(a1) (b1) (c1) 

   

(a2) (b2) (c2) 

   

(a3) (b3) (c3) 

Figura 5.2 ROIs cropped from the targeted major brain structures. The first line is for L1 =79.8 

mm; the second line L2 = 84.9 mm; and the third line is for L3 = 90 mm. a) CSF; b) GM; c) WM 
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By comparing the examined cerebral structures, the higher inter-site variation was obtained for 

WM and for the slice L2 = 84.9 mm. It is prone to the noise and edge effect of the anatomic 

structures (fig. 5.2, second line). For all b-value combinations a paired t-test has been 

performed and its results indicated that ADCs are significant for analyzed brain tissues and CSF 

with 95% confidence. For all ROIs, the mean ADC values were in the cortical gray matter, 

(0.6810.07) 10-3  2 /mm s (intervalul, 0.56–0.7810-3 , in the white matter, (0.6130.10)10-3 

2 /mm s  (intervalul 0.319–0.68610-3 2 /mm s ) and in CSF (1.930.28)10-3 2 /mm s  (intervalul 

1.59–2,43 10-3 2 /mm s ).  

 

Figure 5.3 illustrates one example for all analyzed cerebral structures. 

   

(a1) CSF 1 (b1) GM 1 (c1) WM 1 

   

(a2) CSF 2 (b2) GM 2 (c2) WM 2 

   

(a3) CSF 3 (b3) GM 3 (c3) WM 3 

Figure 5.3 The histograms of the raw DW-MRI. The first line is for L1 =79.8 mm; the second line 

L2 = 84.9 mm; and the third line is for L3 = 90 mm. a) CSF; b) GM; c) WM.  

 



Lucian Traian DIMITRIEVICI Study of complex digital images using statistical operators 

45 
 

The signal dependencies - the attenuation factor b of the equation obtained for the three 

types of brain tissues are presented below: 
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Figure 5.4 Signal-versus-b curves  ( 0ln( / ) ( )S S f b ) over five brain ROIs. The first line is for 

L1 =79.8 mm; the second line L2 = 84.9 mm; and the third line is for L3 = 90 mm. a) CSF; b) 

GM; c) WM.  
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ADC values for a specific analyzed cerebral structure placed in the various location of the brain 

did not differ significantly. On the other hand, the mean cerebrospinal fluid ADC value was 

significantly higher than the mean white and gray matter values . 

Figure 5.5 summarized the inter-site analysis and reproducibility of the apparent 

diffusion coefficient value.. 
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Figure 5.5 ADC values (mean ±SD) averaged over small 10X10 ROIs in the cortical gray matter, 

in the white matter and into CSF for all b-value combinations. 

 

5.2 Magnetic field gradients and their effects on the diffusion tensor derivate measures 

 

This study aims to find the effect of strong magnetic gradient fields in FA  and MD  

values and their bias  and  between affected and reference data using a hemisphere approach: 

2
( )ICH H

left lefti
FAleft FA FA    și 

2
( )ICH H

right righti
FAright FA FA          

 (5.3) 

For a quick visualization of tissue differences, the histographic characteristics of the 

brain hemispheres in DTI images for various magnetic gradient fields were used. 

Figure 5.6 shows The natural differences between the left and right hemispheres. The 

effect of the strong magnetic field is visible when a shift of the center of the distribution of the 

pixels to the median distribution of the grayscale [0, 255] appears. Also, for higher magnetic 

field gradients histograms are slightly narrow. 

 

 

 



Lucian Traian DIMITRIEVICI Study of complex digital images using statistical operators 

47 
 

 

Healthy subject ICH subject 

    

    

    

    

    

    

Figure 5.6 Examples of histograms of the left and right brain hemispheres for a healthy and ICH 

subject for different magnetic field gradients. 
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The quantification of the bias in FA and MD difference between affected and reference 

data within a brain hemisphere approach is presented in figure 5.7. 

For lower b-value combinations,   and  were significantly different between left 

and right hemispheres whereas for higher b-values these differences are minimized.  

Comparison with reference data of healthy patients showed that higher gradients 

efficiently reduced bias in both FA and MD by reducing the artifacts. 

 

  

Figure 5.7 The bias in FA and MD by using the root-mean-square difference between 

subjects affected by ICH compared with healthy subjects, for various magnetic field gradients 

 

5.3 The diffusion maps and the parameters associated with the diffusion tensor, in an 

analysis based on cerebral hemispheres. 

5.3.1 Measures of diffusion anisotropy 

-are described Trace Tr(D) (1.7), Mean diffusivity , (MD) (1.3),  the axial diffusivity   D  (1.4) and 

radial diffusivity D (1.15). 

5.3.2 Three-phase (3P) plot 

The anisotropy shape measures, namely the linear-, planar-, and spherical anisotropy 

are defined respectively as follows: 

1 2

3 ( )
Lc

Tr D

 
            (5.3) 

2 32( )

3 ( )
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Tr D

 
          (5.4) 
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3

3 ( )
Sc

Tr D


           (5.5) 

5.3.3 Detectability index 
 

The detectability index discriminates between the analyzed classes. It is based on the mean 

of the anisotropy values 

1 2

2 2
1 2

A A
d

 





          (5.6) 

Table 5.2 established a decrease in the FA (that may indicate myelin or axon membrane 

damages or a reduction of axonal packing density) and an increase in MD values for patients 

with brain injuries.  

Table 5.2 Diffusion characteristics (mean  SD) of the left and right hemispheres and of the 

whole brain across samples. 

 

Typical images of the FA and tADC tensor-metric maps for an example of the acquired 

sequences in healthy subjects as well as patients with ischemic stroke and temporal 

intracerebral haemorrhage are shown in the figure 5.8: 
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Figure 5.8 H Two levels of diffusion weighting, b1=250 s/mm2 and b2=1000 s/mm2 

 are presented. (A) FA tensor map - white areas indicate higher anisotropy; (B) tADC 

trace tensor map. Color code: red (left–right), green (anterior–posterior) and blue (superior-

inferior). 
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Figure 5.8 IS Two levels of diffusion weighting , b1=250 s/mm2 and b2=1000 s/mm2 

 are presented. (A) FA tensor map - white areas indicate higher anisotropy; (B) tADC trace 

tensor map. Color code: red (left–right), green (anterior–posterior) and blue (superior-inferior).  

For IS images, tADC reveals decreased FA (diminished blue – red arrow). For ICH images (left 

temporal lobe – yellow arrow), tADC shows persistently decreased FA. 
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Figure 5.8 ICH Two levels of diffusion weighting b1=250 s/mm2 and b2=1000 s/mm2 

 are presented. (A) FA tensor map - white areas indicate higher anisotropy; (B) tADC 

trace tensor map. Color code: red (left–right), green (anterior–posterior) and blue (superior-

inferior).  
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The 3P plots that provide the trend in anisotropy with the change in the microstructural 

integrity of the brain are presented in Figure 5.9 

 

 

(a)                                          (b)                                           (c)  

Figure 5.9  

Three-phase plot for linear, planar and spherical measures of diffusion anisotropy for analyzed 

cases: (a) Healthy subjects, (b) ICH and (c) IS. 

 

Figure 5.9 depicted that in the healthy subjects there is a similarity between the 

measured values of tensor shape for left and right hemispheres and a relative variation at the 

level of the entire brain. In addition, the ICH has an important contribution from the spherical 

anisotropy for LH and almost equal weights for RH, but a strong dissimilarity of anisotropy 

shape measures between brain hemispheres and entire brain are displayed. The IS has the 

higher spherical anisotropy behavior for the LH and whole brain, and almost equal weights of 

the linear and planar anisotropy for RH 

Table 5.3 listed the estimated detectability results between left and right brain 

hemispheres and between each hemisphere and the entire brain, for each of the anisotropy 

measures. 

 

Table 5.3 Detectability index d between left and right hemispheres for each anisotropy measure 

 LH vs. RH RH vs. WB LH vs. WB 

 H ICH IS H ICH IS H ICH IS 

FA 5.99·10-3 0.380 1.21 6.92·10-3 0.017 1.19 1.18·10-2 0.346 0.215 

MD 0.011 0.302 0.315 1.17 0.915 0.992 1.08 0.631 0.543 

D  0.002 0.318 0.593 1.06 1.04 0.427 1.04 0.776 1.91 

D  0.004 0.339 0.613 1.01 0.994 1.62 1.06 0.607 1.37 
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It gives an inverse measure of the membrane density and according to data presented in 

Table 1, MD increases due to the degradation of the barriers to free water diffusivity in damaged 

tissues[39]. However, the MD has an opposite correlation to FA, where it is very sensitive to 

edema or necrosis. 

The results of this study were published in [40] L. Moraru, S. Moldovanu, L. T. 

Dimitrievici, F. Shi, A. S. Ashour, N. Dey, Quantitative Diffusion Tensor Magnetic Resonance 

Imaging Signal Characteristics in the Human Brain: A Hemispheres Analysis, IEEE SENSORS 

JOURNAL, VOL. 17, NO. 15, AUGUST 1, 2017, pp 4886-4893 

5.4 Measurement of non-Gaussian diffusion in brain tissues 

5.4.1 Series expansion method 

In the brain, diffusion is anisotropic as the measured value depends on the direction. 

Anisotropic diffusion is adequately represented by a symmetric effective (or apparent) diffusion 

tensor (i.e. it has six independent parameters): 

   (5.7) 

Equation (5.7) becomes for non-Gaussian diffusion: 

      (5.8) 

For b1, b2 and b3, the diffusion D and kurtosis K coefficients are given by: 

         (5.9) 

          (5.10) 

where  and  were estimated from DTI images.. 

The plots of diffusion-weighting dependence of the diffusion coefficient and diffusional 

kurtosis for CSF, GM and WM provided by Series expansion method are presented in figure 

5.10. The linear dependencies plotted in the left column fit the equation (2) which describes the 

Gaussian diffusion and those plotted in the right column fit the equation (5) of non-Gaussian 

diffusion. The diffusion model has the kurtosis coefficient K = 0. In the case of DKI model, the 

logarithm of the signal intensity fits to a parabola. 

The trend lines for both linear and polynomial dependencies are indicated for comparison 

purposes. Also the equation of the trend lines and the correlation coefficients are provided. 
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Figure 5.10 DTI and DKI models for brain tissues.  

Table 5.4 Parameters of Gaussian and non-Gaussian diffusion models provided by Series 

expansion method (denoted as  ) and by approximation method, for two normal healthy young 

adults 

 

According to the data in Table 5.4, some variations of diffusion and kurtosis coefficients 

are observed between the calculated and estimated values. The diffusion coefficient estimates 
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are accurate to within about 25% for CSF, 27% for GM and 16% for WM. The diffusional 

kurtosis estimates are accurate to within about 15% for CSF, 28% for GM and 47% for WM. 

5.5 Conclusions: 

1)Analysis of the ADC coefficient values specific to the main brain tissues shows that the mean 

free water content of GM is higher than in WM. On the other hand, all WM structures have 

higher myelin water values than all GM structures; consequently, white matter shows 

hyperintensity relative to the gray matter. The ADC values in the CSF are almost two times 

higher than the gray and the white matter values because the water diffusion is much less 

restricted in the CSF than in the brain tissue. 

2)We have shown that the effect of magnetic field gradients on the pixel distribution in diffusion 

tensor images and on diffusivity measures such as FA and MD. The results suggested, in the 

hemorrhage cases, the average FA values decreased. Our data are in agreement with the 

plethora of research studies that reported the reduction of FA in a case of various brain 

diseases. Also, MD increases and this could be correlated to the increase of tissue water 

content after intracerebral hemorrhage. 

3)The main findings of the proposed analysis for the diffusion tensor and its parameters were:  

(i) the hemisphere approach led to an improved estimation of the anisotropy measures. 

Hence, better assessment of the microstructural integrity of the brain was obtained when the 

hemorrhagic brain injuries were compared to the healthy subjects; 

 (ii) three-phase plot allows the visualization of the shape properties of anisotropy measures 

and this can speed up the comparison between different brain injuries 

 (iii) some anisotropy measures were more appropriate than others in discriminating between 

brain injuries. Thus, FA better separates healthy from ICH and IS - induced brain injury subjects, 

whereas the radial diffusivity better discriminates between the left and right hemispheres versus 

the whole brain for ICH and IS subjects. These results justify the proposed choice to use four 

measures of diffusion tensor anisotropy in the current analysis. For further improvement, the 3P 

maps were used to visualize the specific shape feature of the diffusion tensor.  
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General conclusions and future research  

- A method has been proposed to search for the correlation between spatial pixel distribution 

and microstructure attributes of neurodegenerative diseases of Alzheimer's, Pick's and brain 

calcinosis, based on entropy, in an RGB approach. 

-We developed a method to estimate the diffusion tensor shape for each hemisphere and for 

the entire brain based on linear, planar and spherical measures in a 3-phase plot in order to 

map and to compare the changes in anisotropy from healthy to hemorrhagic brain injury.  

-We have proposed a predictive model that allows the association of a pathology with a 

certain area of the brain (frontal, parietal and temporal lobes) using the values of structural 

anisotropy. The main challenge in the proposed model is the minimization of the analyzed brain 

area, while still achieving a high classification rate. It is a merit of the proposed model to 

statistically distinguish between Alzheimer‟s and Pick‟s diseases when basically the same types 

of imaging data are required to develop this model. 

-We have proposed a classification scheme based on Gaussian mixed models, GMM, to 

identify the variability of brain tissue in DTI images. 

GMM has been shown to provide faster statistics with a high predictability rate 

 

Future research directions pursued: 

- The study of new methods of digital image processing with medical applications. 

In this regard, the study of Matlab programming environments will be started, including the 

Image Processing and Python library, especially of the nipy, dipy, nibabel packages in order to 

develop a general structure of a brain image processing system. 

- The effective calculation of the coefficients (Wijkl) values that define the Kurtosis tensor, 

respectively of the other anisotropic sizes, such as the fractional anisotropy Kurtosis (KFA), the 

generalized fractional anisotropy (GFA), etc. from non-Gaussian diffusion. 
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