IOSUD – UNIVERSITATEA "DUNĂREA DE JOS" DIN GALAȚI

Școala Doctorală de Inginerie Mecanică și Industrială

TEZĂ DE DOCTORAT STUDII PRIVIND CURGEREA CU SUPRAFAȚĂ LIBERĂ ÎN JURUL JONCȚIUNILOR

REZUMAT

Doctorand,

ing. Costel UNGUREANU

Conducător științific, Prof univ.dr.ing. Costel Iulian MOCANU

Seria I 6: Inginerie mecanica nr. 54

GALAŢI

2020

IOSUD – UNIVERSITATEA "DUNĂREA DE JOS" DIN GALAȚI

Școala Doctorală de Inginerie Mecanică și Industrială

TEZĂ DE DOCTORAT

STUDII PRIVIND CURGEREA CU SUPRAFAȚĂ LIBERĂ ÎN JURUL JONCȚIUNILOR

REZUMAT

Doctorand,

ing. Costel UNGUREANU

Președinte:	Prof.univ.dr.ing. Elena MEREUȚĂ
	Universitatea "Dunărea de Jos" din Galați
Conducător științific,	Prof.univ.dr.ing. Costel Iulian MOCANU
	Universitatea "Dunărea de Jos" din Galați
Referenți oficiali:	Prof.univ.dr.ing. Anton HADĂR
	Univesitatea POLITEHNICA din București
	Prof.univ.dr.ing. Ilare BORDEAŞU
	Univesitatea "Politehnica" din Timișoara
	Prof. univ.dr.ing. Leonard DOMNIŞORU
	Universitatea "Dunărea de Jos" din Galați

Seria I 6: Inginerie mecanica nr. 54

GALAŢI

2020

Seriile tezelor de doctorat susținute public în UDJG începând cu 1 octombrie 2013 sunt:					
	Domeniul fundamental \$TIINTE INGINERE\$TI				
Seria I 1:	Biotehnologii				
Seria I 2:	Calculatoare și tehnologia informației				
Seria I 3:	Inginerie electrică				
Seria I 4:	Inginerie industrială				
Seria I 5:	Ingineria materialelor				
Seria I 6:	Inginerie mecanică				
Seria I 7:	Ingineria produselor alimentare				
Seria I 8:	Ingineria sistemelor				
Seria I 9:	Inginerie și management în agicultură și dezvoltare rurală				
	Domeniul fundamental ŞTIINȚE SOCIALE				
Seria E 1:	Economie				
Seria E 2:	Management				
Seria SSEF:	Știința sportului și educației fizice				
	Domeniul fundamental ŞTIINȚE UMANISTE ȘI ARTE				
Seria U 1:	Filologie- Engleză				
Seria U 2:	Filologie- Română				
Seria U 3:	Istorie				
Seria U 4:	Filologie - Franceză				
	Domeniul fundamental MATEMATICĂ ȘI ȘTIINȚE ALE NATURII				
Seria C:	Chimie				
	Domeniul fundamental STIINTE BIOLOGICE SI BIOMEDICALE				
Seria M:	Medicină				

Cuprins

Introduce	ere			Rezumat 1	Teză 1
Capitolul	1. Stadiul ac	tual			
. 1.1.	Importanta si	i actualita	atea temei	3	3
1.2.	, Motivatia ale	aerii tem	ei de cercetare	6	6
1.3.	7	12			
Capitolul	2. Modele ma	atematic	e, algoritmi și scheme de discretizare	9	21
Capitolul	3. Verificare	și Valida	are		
3.1.	Introducere			10	57
	3.1.1. OI	biective		10	57
3.2.	Metodologie	de Verifi	care și Validare	10	58
3.3.	Curgerea cu	ı suprafa	ață liberă în jurul unui profil penetrant,		
	NACA 0012.			11	67
	3.3.1 E>	perimen	t bazin carene	11	67
		3.3.1.1.	Bazin de carene	11	68
		3.3.1.2.	Model experimental NACA 0012	12	68
		3.3.1.3.	Condiții experimentale	13	69
		3.3.1.4.	Rezultate experimentale	14	70
		3.3.1.5.	Incertitudini experimentale	16	74
	3.3.2 Ca	3.3.1.6. alcul nun	Profilul valului pe corp neric al curgerii cu suprafață liberă în jurul	17	80
	ur	ui profil.		18	80
		3.3.2.1.	Introducere	18	80
		3.3.2.2.	Incertitudini numerice	19	82
	3.3.3 Co	omparați	e CFD-EFD	20	83
3.4.	Curgerea in j	urul jonc	tiunilor	23	87
	3.4.1 Cu	urgerea p	pe placă plană	23	87
		3.4.1.1.	Benchmark	23	87
		3.4.1.2.	Verificare și Validare	23	87
	3.4.2. Cu	urgerea î	n jurul profilului NACA 0012	24	90
		3.4.2.1.	Benchmark	24	90
		3.4.2.2.	Verificare și Validare	25	90
Capitolul	4. Studiul cu	ırgeri în	jurul joncțiunii fără suprafață liberă		
4.1.	Introducere			27	95
4.2.	Obiective			27	95
4.3.	Model nume	ric		27	95
	4.3.1. Co	ondiții la	limită	27	95
	4.3.2. So	cheme nu	umerice	28	96
	4.3.3. Ge	enerarea	ı grilei	28	96
4.4.	Rezultate și d	discuții		29	97
	4.4.1. In	fluența u	nghiului de înclinare al profilului	29	98
	4.4.2. In	fluența c	urburii plăcii: concavă / convexă	33	105
		4.4.2.1.	Placa concavă	35	106
		4.4.2.2.	Placa convexă	35	114

4.4.3. Influența numărului Reynolds	36	122
Capitolul 5. Curgerea cu suprafață liberă în jurul joncțiunilor		
5.1. Introducere	41	132
5.2. Obiective	41	132
5.3. Model numeric	41	132
5.3.1. Condiții la limită	41	132
5.3.2. Scheme numerice	42	133
5.3.3. Generarea grilei	42	134
5.4. Rezultate și discuții	43	134
5.4.1. Influența unghiului de înclinare al profilului	43	134
5.4.2. Influența adâncimii	49	142
5.4.3 Influența vitezei	49	145
Capitolul 6. Concluzii generale	51	148
Capitolul 7. Contribuții personale la dezvoltarea cunoașterii în		
domeniu și perspective	53	150
Bibliografie:	54	151

Cuvinte cheie: jonctiuni, profil hidrodinamic, suprafata libera, curgere turbulenta, rezistenta la inaintare, NACA 0012,

Introducere

Curgerea cu suprafață liberă este o problemă hidrodinamică cu o configurație geometrică aparent simplă dar cu o topologie a curgerii complicată de gradientul de presiune datorat prezenței obstacolului, de interacțiunea dintre stratul limită și suprafața liberă, turbulență, spargerea valurilor, efectele tensiunilor de suprafață dintre apa și aer. În condițiile în care apendicii devin din ce în ce mai utilizati și cu dimensiuni din ce în ce mai mari, înțelegerea generală asupra câmpului de curgere în jurul apendicilor și a joncțiunii dintre aceștia cu corpul navei reprezintă o problemă de actualitate pentru hidrodinamica navală.

La curgerea cu strat limită, cănd liniile de curent întâlnesc un corp montat pe o suprafață solidă plană sau curbă, apar desprinderi în fața acestuia datorită efectului de blocaj. Urmare a acestui fapt, în fluid se dezvoltă structuri vorticale, denumite și potcoave de vârtejuri, curentul fiind unul cu un caracter complet tridimensional, complicat de interacțiunile dintre stratul limita și structurile vorticale astfel generate.

În pofida importanței temei, literatura de specialitate consemnează lipsa unor metode coerente de investigare a curgerii cu suprafață liberă în jurul joncțiunilor, lipsa unor studii consistente privind influența înclinării profilului față de corp precum și influența razei de curbură a plăcii suport asupra cămpului de curgere, cauza principală fiind reprezentată de înțelegerea insuficientă a mecanismelor complexe care guvernează asemenea procese de curgere. Drept urmare lucrarea de față, *"Studii privind curgerea cu suprafață liberă în jurul joncțiunilor",* iși propune să studieze sistematic influența inclinării profilului față de placa suport, influența curburii plăcii, influența suprafeței libere, dar și influența numerelor Reynolds și Froude asupra joncțiunilor

În acest context cercetările numerice și experimentale derulate pe parcursul studiilor de doctorat au vizat următoarele obiective științifice:

> Aprofundarea și implementarea unei metodologii pentru determinarea erorilor experimentale și numerice și a incertitudinilor experimentale și numerice.

> Stabilirea metodologiei de calcul și a schemelor numerice utilizate în studiul curgerii vâscoase fără suprafață liberă în jurul joncțiunilor;

> Stabilirea metodologiei de calcul și a schemelor numerice utilizate în studiul curgerii vâscoase cu suprafață liberă în jurul joncțiunilor;

Studiul curgerii în jurul profilului montat pe placă plană, concavă și convexă, fără suprafață liberă;

Studiul curgerii în jurul profilului montat pe placă plană, concavă și convexă cu suprafață liberă;

În capitolul 1, *Introducere*, se motivează alegerea prezentei teme de cercetare, se prezintă importanța și actualitatea temei si stadiul cunoașterii privind curgerea în jurul joncțiunilor. De asemenea, se descriu obiectivele științifice care stau la baza dezvoltării temei de cercetare.

În capitolul 2, *Modele matematice, algoritmi și scheme de discretizare*, se prezintă modelul matematic utilizat în simularea numerică a curgerii în jurul joncțiunilor, metodele și modul de discretizare a problemelor numerice, precum și schemele numerice și algoritmii utilizați.

În capitolul 3, **Verificare și Validare**, se prezintă metodologia de verificare și validare numerică și experimentală precum și metodologia pentru determinarea erorilor și incertitudinilor determinărilor experimentale și numerice. De asemenea, se descrie experimentul propriu realizat în bazinul de carene al Facultății de Arhitectură Navală ca suport pentru validarea metodologiei numerice de curgere cu suprafață liberă, și se valideaza metodologiei curgerii în jurul joncțiunii complet imersate cu ajutorul experimentelor benchmark din literatura de specialitate.

În capitolul 4, **Curgerea în jurul joncțiunii fără suprafață liberă**, se prezintă rezultatele investigațiilor numerice privind curgerea fără suprafață liberă în jurul joncțiunilor, mai precis studiul influenței unghiului dintre profil și placă, studiul influenței curburii plăcii, studiul influenței vitezei curentului asupra joncțiunii considerată complet imersată.

În capitolul 5, *Curgerea în jurul joncțiunii cu suprafață liberă*, se prezintă studiile privind influența înălțimii suprafeței libere, studiul influenței vitezei curentului, studiul înclinării profilului față de placă și studiul curburii plăcii asupra joncțiunii cu suprafață liberă.

În capitolul 6, **Concluzii generale**, se prezintă concluziile principale rezultate din studiile sistematice asupra curgerii cu suprafață liberă în jurul joncțiunilor cu impact în hidrodinamica navală.

În capitolul 7, final, **Contribuții personale la dezvoltarea cunoașterii în domeniu și perspective**, sunt prezentate contribuțiile originale ale tezei de doctorat, cu impact în dezvoltarea cunoașterii în domeniu și perspectivele pentru continuarea cercetărilor, precum și diseminarea rezultatelor obținute în domeniul de cercetare abordat.

Activitățile de cercetare din cadrul tezei de doctorat au fost realizate cu ajutorul infrastructurii moderne de cercetare a Centrului de Cercetare "Arhitectură Navală" (CCAN).

Pe parcursul studiilor doctorale, doctorandul a fost implicat ca membru în echipele a două granturi de cercetare (Grant PNII-IDEI, CNCSIS ID_790 si Grant PNII, TOYROV, 2003401 / 12116 / 1.10), a unui proiect POSDRU (PiiF, 86/1.2/S/61830), dar și în contracte de cercetare – proiectare cu mediul privat.

Rezultatele cercetărilor desfăşurate în cadrul tezei de doctorat au fost prezentate pentru diseminare în 18 articole știintifice publicate în reviste cotate ISI proceedings și indexate în baze de date internaționale, o carte "Instalații navale de bord", EDP Bucuresti, 2017, 8 comunicări la manifestări științifice reprezentative pentru domeniul naval.

Capitolul 1. Stadiul actual

1.1.Importanța și actualitatea temei

În ultimii ani, interesul privind încălzirea globală a crescut simtitor, iar subiecte precum eficientizarea energiei, poluarea mediului înconjurator, sau reducerea emisiilor gazelor cu efect de seră sunt de mare actualitate. Eforturile internaționale de reducere a impactului schimbărilor climatice au inceput în 1992, la Rio, unde mai mult de 150 de guverne au semnat un acord cadru pentru dezvoltare durabilă. În 1997 a fost adoptat Protocolul de la Kyoto prin care statele semnatare, 37 de state industrializate si Comunitatea Europeană, se angajau ca până în 2012 să reducă nivelul gazelor cu efect de seră în medie cu 5,2% fată de anul 1990. Datorită caracterului internațional, transportul naval nu a putut fi tratat explicit în Protocolul de la Kyoto (Anexa 1). În schimb, presiunea publică si politică privind emisiile de gaze cu efect de seră datorate transportului naval s-a mutat către Organizația Maritimă Internatională (IMO-International Maritim Organisation). Conform, "Second IMO GHG Study 2009", "cea mai cuprinzătoare si autoritară estimare a gazelor cu efect de seră din domeniul naval", în 2007, transportul naval de mărfuri a produs aproximativ 1046 milioane tone emisii de gaze, reprezentand cca. 3,3% din emisiile globale, din care 870 milioane de tone de dioxid de carbon (CO₂), 2,7% la nivel global. Efectuând calcule pe diverse scenarii de emisii de gaze, IMO a constatat că în absența unor politici de mediu concrete, până în 2050, nivelul emisiilor de CO₂ va crește cu 150-200% față de nivelul din 2007. Astfel că, începând cu 1 ianuarie 2013, indicele de eficientă energetică de proiectare (EEDI-Energy Efficiency Design Index) cât și indicele de eficiență de operare (EEOI-Energy Efficiency Operational Indicator) devin obligatorii pentru toate navele maritime mai mari de 400 de tone (MPEC 62, 2011). Conform rezoluției IMO, acești indici sunt specifici fiecărui tip de navă și trebuie scăzuti până în 2025, cu până la 30% fata de o valoare de referintă. De fapt, acesti indici reprezintă raportul dintre totalul emisiei de CO₂ de la bordul navei si capacitatea de transport, viteza si parametrii ce tin de conditiile de exploatare a navei.

Navele în exploatare se pretează mai puțin modificărilor majore de design, și se bazează mai degrabă pe retehnologizarea compartimentului de mașini sau pe utilizarea de dispozitive de economisire a energiei. Pentru proiectele noi de nave misiunea arhitecților navali de a crește eficiența energetică este din ce în ce mai dificilă, deoarece, orice navă nouă înglobează deja ultimele dezvoltări și inovări în domeniu existente pe piața la momentul respectiv. Conform, Ungureanu et al., (2013) măsurile pe care un arhitect naval le poate întreprinde pentru diminuarea indexului de eficiență energetică de proiectare se împart în patru categorii distincte:

- măsuri hidrodinamice;
- măsuri structurale;
- > măsuri tehnologice;
- măsuri operaționale.

Măsurile structurale contribuie la descreșterea EEDI prin creșterea capacității de transport a navei. Acest lucru este posibil fie optimizând structura de rezistență a navei fie prin utilizarea unor oțeluri înalt aliate care să conducă la o scădere a grosimii tablelor utilizate și implicit a masei corpului gol. Astfel că la același deplasament al navei și la o masă mai mică a navei goale, capacitatea de transport crește.

Măsurile tehnologice au ca scop reducerea puterii amplasate la bord prin îmbunătățirea eficienței energetice a motoarelor, principale și auxiliare, prin utilizarea de combustibili alternativi sau prin implementarea de sisteme alternative de producere a energiei necesare. În general, aceste măsuri presupun investiții financiare consistente pentru a obține reduceri substanțiale ale emisiilor cu efect de seră. Principalul poluator de la bordul navei este motorul principal (sau motoarele principale). Puterea necesară cât si gabaritul acestuia (acestora) depind de rezistența la înaintare și de eficiența sistemului de propulsie. Motorul principal de propulsie clasic îl reprezintă motorul în doi timpi alimentat cu păcura. Motoarele în doi timpi sunt motoare lente, economice dar agabaritice si foarte poluante. Eficienta sistemelor de propulsie este cu atat mai mare cu cât diametrul propulsorului este mai mare. Acest lucru determina, de cele mai multe ori ca nava să fie proiectată "în jurul" sistemului de propulsie și nu invers. De asemenea, liniile de arbori pot avea gabarite considerabile influentând utilizarea eficientă a spatiilor în zona pupa. O modalitate de a creste eficienta la bordul navei este de a înlocui sistemul clasic de propulsie cu sisteme diesel-electrice. Acestea înlocuiesc sistemul clasic de propulsie motor-arbori-elice cu baterii de dieselgeneratoare și propulsoare electrice. Astfel că spațiul rămas în zona compartimentului de mașini poate fi utilizat pentru transportul de marfă. Chiar dacă aceste diesel-generatoare sunt optimizate să functioneze la anumite turatii si încărcări, nu rezolvă problema poluării mediului înconjurător. Conform AEA Energy & Environment (2008), propulsorul nu consumă decât aprox. 43% din energia hidrocarburilor uilizate, restul pierzânduse prin gazele de esapament, 27%, si căldură, 30%. Cunoscânduse asta, un pas important în diminuarea emisiilor motoarelor la bordul navei îl reprezintă utilizarea motoarelor cu alimentare duală, diesel/LNG, sau motoare doar pe baza de LNG. Conform unui studiu efectuat de registrul de clasificare norvegian, Det Norske Veritas (2010), utilizarea gazelor naturale conduce la o scădere cu 20% a emisiilor de CO₂. De asemenea, se elimină emisiile de oxizi de sulf (SOx) și particule în atmosferă și se reduc emisiile de oxizi de azot (NOx). În schimb, există două incoveniente în adoptarea acestor sisteme. Unul îl reprezinta costul investiției, în prezent fiind cu 10-20% mai scumpe decît cele clasice, iar celălalt îl reprezintă infrastructura de reîncărcare, ce limitează autonomia navei.

O altă direcție de îmbunătățire a eficienței o reprezintă utilizarea sistemelor de producere a energiei alternative cum ar fi:

> sisteme de recuperare a căldurii evacuate prin coşul de fum (MAN, 2012);

> sisteme de vele solide cu panouri fotovoltaice, care să utilizeze energia eoliană și energia solară în același timp (Sommer, 2013);

➤ utilizarea paraşutelor pentru exploatarea curenţilor de aer (Ockels et al., 2006; Naaijen et al., 2007; Erhard et al., 2012);

> utilizarea turbinelor eoliene la bordul navei pentru producerea energiei electrice (Sommer, 2013);

Măsurile operaționale se referă la modul în care nava este exploatată. În această categorie intră măsuri ca reducerea vitezei de serviciu, optimizarea balastării și a asietei, curățarea corpului navei și a propulsorului, mentenanța mașinii de propulsie cât și optimizarea traseului de navigație și a programării în porturi. Aceste măsuri presupun investiții modeste în echipamente hardware și produse software. Cea mai importantă măsură din această categorie o reprezintă reducerea vitezei. Chiar daca viteza se regăsește în formula de calcul a EEDI la numitor, aceasta are un efect extraordinar asupra indicelui prin dependența puterii amplasate la bord de viteză la puterea a treia. De exemplu, registrul german de clasificare, Germanisher Lloyd (2011) a propus reducerea vitezei de la 19 la 16 noduri pentru o navă de tip portcontainer de 1200 TEU. Rezultatul obținut a fost reducerea puterii mașinii principale de propulsie de la 11, 2 MW la 9 MW. Însă, reducerea vitezei ca măsură principală nu poate fi aplicată mărfurilor perisabile și rămâne nepopulară în rândul armatorilor, deoarece influențează timpul de livrare a mărfii cât și costurile de operare și implicit profitul armatorului. Deci orice reducere a vitezei de croazieră trebuie să balanseze cumva costurile de exploatare a mărfii cu profitul armatorului.

Măsurile hidrodinamice sunt cele mai importante măsuri care pot fi luate în faza de proiectare. Aceste măsuri se concretizează prin optimizarea dimensiunilor și a formei navei sau proiectarea propulsoarelor adaptate siajului navei. Scopul principal îl constituie reducerea rezistentei la înaintare si cresterea eficientei sistemului de propulsie care conduc în final la reducerea puterii amplasate la bordul navei. În conditiile în care formele unei nave, sunt departe de a fi perfecte din punct de vedere hidrodinamic, acestea fiind rezultatul unui compromis între dimensiunile principale impuse de dimensiunea ecluzelor, adâncimea senalului navigabil, adâncimea acvatoriului în port, de pretul taxelor, capacitatea de transport (deadweight, volum), echiparea navei (mașini, instalații de punte, instalații de corp), perfomanțele hidrostatice și nu în ultimul rând de performanțele hidrodinamice ale navei, se apelează din ce în ce mai des la așa numitele dispozitive de control a curgerii sau dispozitive de economisire a energiei (Energy Saving Devices-ESD) pentru a imbunătăți curgerea în jurul navei. Fără a fi considerate corectii ale unor eventuale erori de proiectare a formelor, aceste dispozitive sunt apendici montați pe învelișul navei, în zona din pupa a navei, în proximitatea propulsorului. Au rolul de a uniformiza câmpul de curgere în discul elicei, montânduse în prova propulsorului, sau de a recupera din energia propulsorului pierdută prin componenta tangențiala a vitezei, caz în care se montează în pupa elicei. Carlton (2007) face o descriere complexă a tuturor dispozitivelor de control. Printre cele mai cunoscute dispozitive de control a curgerii se numeră retelele de profile amonte si aval de elice, duza Schneekluth, duza Mewis, dispozitiv Grim; reteaua de profile pe coafa elicei (figura 1.1).

a) Duza Schneekluth, (www.schneekluth.com)

b) Sistem Mewis, (Svardal si Mewis, 2011);

c) DSME prestator, (Daewoo Shipbuilding & Marine Engineering, 2008)

d) Dispozitiv Grim, (de Jong, 2011)

e) Rețea de profile pe coafa elicei, (de Jong, 2011) **Figura 1.1**. Dispozitive de economisire a energiei

1.2.Motivația alegerii temei de cercetare

Ideea utilizării unor dispozitive în pupa navei nu este deloc nouă. Deși prima referință în literatura de specialitate îi aparține lui Van Lammeren în 1949, primul dispozitiv comercial apare abia în 1980 și aparține șantierului naval Mitsui, duza integrată Mitsui. Cu toate că nu se cunoștea prea bine modul în care sistemul Mitsui ajuta la reducerea consumului de combustibil la bordul navei, criza petrolului la nivel global, a condus la succesul acestor tipuri de dispozitive. Neglijate după stabilizarea prețului țițeiului, aceste dispozitive de economisire a energiei revin în prim plan pe fondul pieței instabile a petrolului, datorate conflictelor din Orientul Mijlociu, pe de o parte și datorită introducerii indexilor de eficiență energetică, pe de alta. Astfel că o posibilă scădere chiar și de 5% a puterii amplasate la bord face ca aceste dispozitive să fie foarte atractive pentru armatori.

Curgerea cu suprafață liberă este o problemă hidrodinamică cu o configurație geometrică aparent simplă dar cu o topologie a curgerii complicată de gradientul de presiune datorat prezenței obstacolului, de interacțiunea dintre stratul limită și suprafața liberă, turbulență, spargerea valurilor, cavitație, efectele tensiunilor de suprafață dintre apa și aer. În condițiile în care apendicii devin din ce în ce mai utilizati și cu dimensiuni din ce în ce mai mari,

înțelegerea generală asupra câmpului de curgere în jurul apendicilor și a joncțiunii dintre aceștia cu corpul navei reprezintă o problemă de actualitate pentru hidrodinamica navală.

La curgerea cu strat limită, cănd liniile de curent întâlnesc un corp montat pe o suprafață solidă plană sau curbă, apar desprinderi în fața acestuia datorită efectului de blocaj. Urmare a acestui fapt, în fluid se dezvoltă structuri vorticale, denumite și potcoave de vârtejuri, curentul fiind unul cu un caracter complet tridimensional, complicat de interacțiunile dintre stratul limita și structurile vorticale astfel generate. Potcoava de vârtejuri este generată de combinarea a doua efecte: comprimarea și alungirea componentei transversale a vorticității prezente în stratul limita turbulent din curent, la ocolirea obstacolului, pe de o parte și dezvoltarea structurilor turbionare în proximitatea bordului de atac, în plan vertical, datorate gradientului mare de presiune generat de geometria apendicelui, pe de alta.

În lumea fizică ce ne înconjoară regăsim curgerea în jurul joncțiunii dintre copaci și clădiri cu solul, la picioarele podurilor construite în râuri, turbomașini sau cuplarea aripă-fuselaj la un avion. În hidrodinamica navală, pe lângă ESD, joncțiunile se mai întâlnesc la derivoare, cârme, cavaleți, chile de ruliu sau aripi stabilizatoare (Fig. 1.5).

a)Navă de tip remorcher cu derivor și apendici pentru protecție propulsor, (Ionaș, 2012)

b)laht cu vele (http://trends.nauticexpo.com)

c)Cavaleți axa elice (colecție personală)

d)Nava de pasageri cu aripi stabilizatoare

Figura 1.2. Nave cu apendici

1.3. Metoda de cercetare și metodologia cercetării

În pofida importanței temei, literatura de specialitate consemnează lipsa unor metode coerente de investigare a curgerii cu suprafață liberă în jurul joncțiunilor, lipsa unor studii consistente privind influența înclinării profilului față de corp precum și influența razei de curbură a plăcii suport asupra cămpului de curgere, cauza principală fiind reprezentată de înțelegerea insuficientă a mecanismelor complexe care guvernează asemenea procese de

curgere. Drept urmare lucrarea de față, **"Studii privind curgerea cu suprafață liberă în jurul joncțiunilor"**, iși propune să studieze sistematic influența inclinării profilului față de placa suport, influența curburii plăcii, precum și influența suprafeței libere asupra joncțiunilor. De asemenea, se va studia și influența numerelor Reynolds și Froude. Mai întâi, se va studia profilul montat vertical pe placă plană. Se va înclina în trei pași, cu câte 15[°], mai intâi îin planul perpendicular pe planul de simetrie al profilului, iar apoi în planul de simetrie spre amonte și spre aval, menținând în tot acest timp bordul de atac paralel cu bordul de fuga. Pentru ca îin practică, rare sunt cazurile când placa este plană, iar învelisul navei fiind în general o suprafață tridimensională cu dublă curbură, se curbează placa cu diverse raze, concav cât și convex. Pentru fiecare rază de curbură se pastrează înclinația profilului de la placa plană. Curbura plăcii esta una simplă simetrică față de unghiul de atac de 0 grade. În cazul curgerii cu suprafață liberă se consideră suprafața liberă neperturbată paralelă cu placa de bază, profilul fiind unul de tip penetrant.

Profilul aero-hidrodinamic ales este unul simetric, intens studiat și utilizat în aerodinamică, NACA 0012, pentru care există în literatură informații privind dependența rezistenței la înaintare de numărul Reynolds cât și distribuția coeficienților de presiune și de frecare pe coarda profilului la numere Reynolds apropiate celor din prezenta cercetare cu scopul de a crește gradul de certitudine a investigațiilor numerice.

Ținându-se cont de multitudinea configurațiilor geometrice ale joncțiunilor, de existența suprafeței libere, de variația numerelor Reynolds și Froude cât și de necesitatea studiului parametrilor curgerii, lucrarea de fața va face uz de simularea numerică în calculele parametrice, raza de curbură a plăcii și unghiul dintre profil și placă, și de investigațiile experimentale în bazinul de carene navale în vederea validării metodologiei de calcul cu suprafață liberă, pentru un profil vertical drept, cu unghi de atac nul.

Capitolul 2. Modele matematice, algoritmi și scheme de discretizare

Lucrarea de față are un pronunțat caracter interdisciplinar, constând în modelarea matematică a curgerii vâscoase cu suprafața liberă în jurul joncțiunilor, rezolvarea numerică a curgerii și stabilirea performanțelor hidrodinamice și energetice induse. După Hirsch (2007), simularea numerică a unei probleme de curgere presupune cinci etape. Mai întâi, se adoptă un model matematic constând dintr-un set de ecuații diferențiale sau integrodiferențiale cu derivate parțiale ce definesc nivelul de aproximare a fenomenelor fizice care urmează a fi simulate. Ecuațiile în forma lor diferențială nu pot fi rezolvate direct pe mașinile de calcul pentru că la nivel computațional mașinile de calcul lucrează doar cu numere. Drept urmare ecuațiile care guvernează curgerea sunt transformate în ecuații algebrice, ușor de rezolvat numeric. De asemenea zona din fluid de interes, denumită și domeniu de calcul, suferă un proces de divizare într-o rețea de puncte discrete, conectate în maniere diverse, în care se vor calcula variabilele ecuațiilor algebrice. Acest proces de transformare a ecuațiilor precum si cel de divizare a domeniului de calcul poartă numele de discretizare, și reprezintă al doilea pas în realizarea unei simulări numerice. Apoi se analizează și se stabilesc schemele numerice utilizate în rezolvarea ecuațiilor curgerii. Pasul patru constă în alegerea unui algoritm cu ajutorul căruia se rezolvă sistemul de ecuații algebrice. Etapa finală constă în procesarea și prelucrarea rezultatelor simulării numerice. În această etapă se estimează ordinul de acuratete precum și gradul de incertitudine a simulării, se calculează mărimi fizice globale integrale (de ex. forța portantă, rezistența la înaintare) sau derivate (vorticitate, tensiuni tangențiale), sau se reprezintă grafic mărimile fizice.

Teza este structurată pe două etape:

➢ În prima etapă se studiază joncțiunea complet imersată în regim staționar. În acest caz ecuația presiunii (de corecție a presiunii) se discretizează cu schema standard. Ecuația impulsului, energiei cinetice turbulente și a ratei de disipare specifice se discretizează cu scheme de ordinul doi în contracurent. Presiunea și viteza se cuplează cu o schema SIMPLEC. Factorii de relaxare păstrează valorile standard din programul Ansys Fluent.

➢ În cea de-a doua etapă se calculează curgerea cu suprafață liberă în jurul joncțiunilor, folosind o tehnică a capturării interfeței-VOF, in regim nestationar. În acest caz, se discretizează presiunea cu schema PRESTO și ecuația fracției volumice cu reconstrucția geometrică pentru a se evita difuzia numerică. Mai întâi, se discretizează ecuația de impuls și ecuațiile modelului de turbulență *k*−*ω SST* folosind schema QUICK. Presiunea a fost cuplată cu viteza prin schema PISO.

În ambele etape gradienții fluxului se evaluează folosind metoda Green-Gauss pentru celule, iar ecuațiile se rezolvă cu solverul bazat pe presiune în manieră segregată.

Capitolul 3. Verificare și Validare

3.1. Introducere

3.1.1. Obiective

Obiectivele care definesc structura prezentului capitol sunt:

>Aprofundarea și implementarea unei metodologii pentru determinarea erorilor experimentale și numerice și a incertitudinilor experimentale și numerice.

>Stabilirea metodologiei de calcul și a schemelor numerice utilizate în studiul curgerii vâscoase cu suprafață liberă în jurul joncțiunilor:

-Efectuarea unui experiment în bazinul de carene pentru a studia performanțele hidrodinamice ale unui profil vertical NACA0012 ce penetrează suprafața liberă.

-Verificarea și validarea rezultatelor numerice a curgerii cu suprafață liberă în raport cu rezultatele experimentale.

>Stabilirea metodologiei de calcul și a schemelor numerice utilizate în studiul curgerii vâscoase fără suprafață liberă în jurul joncțiunilor:

-Verificarea rezultatelor numerice a curgerii incompresibile pe placa plană și validarea cu rezultate experimentale din literatura de specialitate

-Verificarea rezultatelor numerice a curgerii incompresibile în jurul profilului hidrodinamic NACA 0012 și validarea cu rezultate experimentale din literatura de specialitate.

3.2. Metodologie de Verificare și Validare

În accepțiunea generală, eroarea unei simulări sau a unui experiment, δ , reprezintă o deficiență măsurabilă ce nu se datorează lipsei de cunoaștere. Totodată, eroarea este diferența dintre valoarea calculată sau măsurată și valoarea "exactă" sau "adevărată". Din acest motiv erorile sunt mai degrabă estimate decât cunoscute cu exactitate și conduc la necesitatea determinării incertitudinilor erorilor de calcul sau experimentale, *I*.

ASME V&V 20, (2009), (figura 3.2), definește eroarea de validare prin comparație, E, ca diferența dintre rezultatul soluționării numerice, S, și rezultatul experimental, D.

Figura 3.1. Sursele de erori în procesul de verificare și validare (ASME V&V 20, 2009)

$$E=S-D \tag{3.1}$$

Erorile simularilor numerice pot fi grupate în trei categorii:

> Erori datorate ipotezelor de modelare, δ_{SM} ;

- > Erori datorate soluționării numerice a ecuațiilor ce guvernează curgerea, δ_{SN} ;
- > Erori introduse în rezolvarea numerică de valori eronate ale parametrilor de intrare, δ_{Sln} . Drept urmare, eroara unei simulării numerice poate fi descrisă ca:

$$\delta_{\rm S} = \delta_{\rm SM} + \delta_{\rm SN} + \delta_{\rm SIn} \tag{3.5}$$

Relația incertitudinii simulării numerice este:

$$I_{\rm S}^2 = I_{\rm SM}^2 + I_{\rm SN}^2 + I_{\rm SIn}^2 \tag{3.6}$$

Erorile și incertitudinile asociate datelor de intrare provin, uzual, în urma utilizării datelor obținute apriori, experimentale sau a unei simulări numerice; rezultate care prezintă incertitudini și care tind să amplifice erorile simulării numerice.

3.3. Curgerea cu suprafață liberă în jurul unui profil penetrant, NACA 0012

3.3.1.Experiment bazin carene

Prezenta lucrare de doctorat iși propune să studieze curgerea vâscoasă cu suprafață liberă în jurul joncțiunilor. În capitolul anterior, *Modele matematice, algoritmi și scheme de discretizare*, s-au prezentat avantajele studiilor numerice sistematice în detrimentul celor experimentale. În literatura de specialitate există teste experimentale pentru profil aerodinamic NACA0012, pe când teste hidrodinamice cu suprafață liberă, nu. Pentru stabilirea și validarea metodologiei dar și a rezultatelor numerice a curgerii cu suprafață liberă a aparut nevoia experimentului în bazinul de carene, experiment ce va fi descris în continuare. Studiile numerice cu sau fără suprafață liberă din prezenta cercetare se vor face la lungimea unitară a corzi profilului. Din considerente legate de viteza căruciorului și influența pereților bazinului asupra testelor experimentale lungimea corzi a fost micșorată la 0,5 m.

3.3.1.1. Bazin de carene

Experimentele au fost realizate în Bazinul de Carene al Facultății de Arhitectură Navală, Universitatea "Dunărea de Jos" din Galați. Bazinul are dimensiunile principale $L \times B \times H = 45 \times 4 \times 3$ m, și este echipat cu un cărucior autopropulsat, marca CUSSONS Technology, dotat cu sisteme de control a vitezei, a accelerației/decelerației și sistem de achiziție a datelor experimenatale. Viteza maximă a căruciorului este de 4m/s pentru un model cu lungimea de 4m și masa de 200 kg.

Figura 3.2. Vedere cărucior în timpul probelor

Sistemul de achiziție înregistrează valorile instantanee cu o frecvență impusă de 0,1Hz. Se pot efectua probe de rezistență la înaintare, autopropulsie, elice în apa liberă, măsurători de siaj și elevația suprafeței libere. Echipamentul utilizat în probele de rezistență la înaintare constă în dinamometrul R35E.

3.3.1.2. Model experimental NACA 0012

Modelul experimental este construit din placaj din lemn rezistent la apă, utilizat în amenajări interioare navale, cu grosimea de 20 mm. Pentru a evita alterarea modelului în contact prelungit cu apa, acesta a fost izolat cu rașină epoxidică. Dimensiunile principale sunt $c \times t \times h = 0.5 \times 0.06 \times 1.2$ m cu toleranță de maxim ±1mm pentru fiecare dimensiune conform ITTC (7.5-01-01-01) privind fabricarea modelelor experimentale. Pentru a măsura profilul suprafeței libere pe model, pe suprafața acestuia a fost lipit un autocolant imprimat cu o grilă fină, cu dimensiuni de 5×5 mm, (figura 3.7).

(a) NACA 0012, vedere laterală

(b) Model imersat

Figura 3.3. Model experimental NACA 0012

3.3.1.3. Condiții experimentale

În incercarea de a acoperi cât mai mult din domeniile de utilizare, regimurile de curgere în jurul unui profil vertical cu suprafață liberă, cât și pentru a studia evoluția rezistenței la înaintare funcție de viteză, au fost alese 12 numere Froude, de la 0,16 la 1,04, cu pas de 0,08. De asemenea, pentru a studia influența imersiuni profilului asupra rezistenței la înaintare au fost alese 4 pescaje, 1, 0,8, 0,6, 0,4 m. Valoarea pescajului minim (0,4m) este influențată de limitele constructive de elevare a sistemului de cuplare a dinamometrului pe model. Pe tot parcursul probelor experimentale a fost monitorizată temperatura apei, înregistrându-se valoarea de 12°C. Măsurătorile pe apa calmă în bazinul de carene presupun o stare linistită a apei. Acest lucru conduce la un program de teste cu pauze de 45-60 minute, necesare calmări apei.

În tabelul 3.1 sunt prezentate vitezele, numerele Fn, precum și numerele Rn aferente testelor experimentale.

	Tabelul	3.1. Cor	ndiții exp	eriment	ale	
Test	1	2	3	4	5	6
$U_c [{ m m/s}]$	0,35	0,53	0,71	0,88	1,06	1,24
Fn	0,16	0,24	0,32	0,40	0,48	0,56
Rn [×10 ⁵]	1,435	2,152	2,869	3,587	4,304	5,021
Test	7	8	9	10	11	12
$U_c [{\rm m/s}]$	1,42	1,60	1,77	1,94	2,12	2,30
Fn	0,64	0,72	0,80	0,88	0,96	1,04
Rn [×10 ⁵]	5,739	6,456	7,173	7,891	8,608	9,325

În tabelul 3.2 sunt prezentate criteriile ITTC (7,5-02-02-01) privind evitarea efectelor negative a pereților laterali sau a fundului bazinului asupra măsuratorilor experimentale. De asemenea sunt prezentate și valori ale testelor similare din literatura de specialitate.

	Tabelul 3.2. Restricții experimentale								
Studiu	Criteriu	Fn _H ≤0.7	$\frac{H}{d} \ge 4$	$\frac{B}{c} \ge 0.35$	$\frac{B}{t} \ge 4$	$\frac{A_b}{A_m} = \frac{BH}{td} \ge 15$			
Chow (19	967)	0,13-0,31	1	2,33	8,97	7,58			
Zhang (1	996)	0,12-0,35	2	2,5	10	20,8			
Pogozels	ki (1997)	0,04-0,4	1,1	3,33	10	11,1			
Kandasa	my (2006)	0,12-0,35	2	2,5	10	20,8			
			4	2,5	10	41,7			
Studiul	d=0,4m	0,424-	7,5	8	66,66	500			
curent	d=0,6m	0,065	5	8	66,66	333			
	d=0,8m		3,75	8	66,66	250			
	d=1m		3	8	66,66	200			

Se observă că toate condițiile sunt îndeplinite, mai puțin raportul H/d pentru cele mai mari două pescaje, 1 m și respectiv, 0, 8 m. Comparând valorile cu cele existente în literatură și ținând cont de faptul că celelate criterii sunt îndeplinite cu mult peste valorile recomandate, se neglijează nerespectarea criteriului H/d.

3.3.1.4.Rezultate experimentale

Rezultatele încercărilor experimentale desfășurate în bazinul de carene pentru toate cele 12 viteze și pentru cele 4 pescaje, exprimate în N sunt prezentate în figura 3.8.

Se observă că odată cu scăderea pescajului, valoarea rezistenței la înaintare scade constant, în medie cu 10% de la 1000 mm la 800 și 600 mm, scăderea fiind mai consistentă de 20% pentru reducerea pescajului de la 600 mm la 400 mm.

În figura 3.10 se prezintă dezvoltarea suprafeței libere pe profilul experimental pentru numerele Froude de la 0,32 la 0,64. La viteză mică, valul de pe suprafața modelului prezintă 2 sau 3 creste de val. Odată cu creșterea vitezei valul din zona bordului de atac se subțiază

și se înalță până se sparge, iar a doua creastă de val migrează către bordul de fuga ca urmare a creșteri lungimii de undă. Se mai observă că pe masură ce viteza crește unghiul pe care îl face sistemul propriu de valuri divergente se mărește, rezultat al desprinderilor liniilor de curent, ca urmare a interacțiunii dintre stratul limită turbulent și suprafața liberă. De asemenea, se mai observă că desprinderea liniilor de curent de pe profil în zona bordului de fuga generează un val cu o înălțime comparabilă cu prima creastă de val, și cu o formă similară a unei "cozi de balenă".

În figura 3.11 se prezintă elevația suprafeței libere pe suprafața profilului adimensionalizată cu coarda profilului, Z/C, pentru pescajul de 1m și numerele Froude de la 0,32 la 0,72, mai puțin la numerele Froude 0,16 și 0,24, unde suprafața liberă prezintă deformații comparabile

cu eroarea de citire. De asemenea, numerele Froude mari $(0,8 \div 1,04)$ au fost excluse din analiză deoarece suprafața liberă nu s-a stabilizat pe perioada incercării experimentale, curgerea fiind puternic turbulentă manifestându-se prin spargerea violentă a valului în zona bordului de atac.

Figura 3.6. Elevația suprafeței libere pe profil adimensionalizată, pescaj 1m

3.3.1.5.Incertitudini experimentale

În tabelele 3.6 și 3.7 se prezintă sinoptic limitele bias și de precizie a surselor posibile de erori, precum si incertitudinea experimentală. Rezultatele sunt exprimate în procente din sursa de erori respectiva. La viteze mici valorile măsurate de dinamometru sunt apropiate ca marime de limitele bias, drept urmare si incertitudinea are valoare mare, în jur de 70% pentru viteza cea mai mică. Pe masură ce valorile rezistentei la înaintare cresc si se depărtează ca mărime de sursele de erori permanente (bias), valorile incertitudinii scad, ajungând până la 3 % la viteza cea mai mare

	Tabelul 3.3. Incertitudini experimentale, pescaj 1000 mm, Fn 0,16 - 0,56								
		Froude							
Surse erori	0,16	0,24	0,32	0,40	0,48	0,56			
Geometria mo	delului								
B _S [%S]	1.02E+00	1.02E+00	1.02E+00	1.02E+00	1.02E+00	1.02E+00			
$B_{S}^{2}\theta_{S}^{2}[\%C_{T}]$	2.460E-04	3.467E-04	5.383E-04	1.328E-03	3.034E-03	4.888E-03			
Viteza cărucio	rului								
$B_{_{Uc}}[\%I_C]$	3.500E-05	5.300E-05	7.100E-05	8.800E-05	1.060E-04	1.240E-04			
$B_{Uc}^2 \theta_{Uc}^2 \left[\% C_T \right]$	9.301E-08	1.336E-07	2.094E-07	5.078E-07	1.169E-06	1.893E-06			
Proprietățile a	pei din bazin								
$B_{_{T}}$ [% $ ho_{_{t}}$]	8.33E-01	8.33E-01	8.33E-01	8.33E-01	8.33E-01	8.33E-01			
$B_{\rho_1}[\%\rho_t]$	1.124E-03	1.124E-03	1.124E-03	1.124E-03	1.124E-03	1.124E-03			

$B_{\rho_2}[\%\rho_t]$	7.128E-03	7.128E-03	7.128E-03	7.128E-03	7.128E-03	7.128E-03			
$B_{\rho}[\%\rho_t]$	7.214E-02	7.214E-02	7.214E-02	7.214E-02	7.214E-02	7.214E-02			
$B_{\rho}^{2}\theta_{\rho}^{2}[\%C_{T}]$	1.241E-08	1.749E-08	2.716E-08	6.699E-08	1.531E-07	2.466E-07			
Rezistența la înaintare a modelului									
$B_{R1}[\% R]$	5.000E-03	5.000E-03	5.000E-03	5.000E-03	5.000E-03	5.000E-03			
$B_{R^2}[\%R]$	3.511E+01	1.971E+01	1.185E+01	6.003E+00	3.257E+00	2.139E+00			
$B_{R}[\% R]$	3.511E+01	1.971E+01	1.185E+01	6.003E+00	3.257E+00	2.139E+00			
$B_R^2 \theta_R^2 [\% C_T]$	2.938E-01	1.305E-01	7.321E-02	4.637E-02	3.118E-02	2.167E-02			
Coeficientul re	zistenței la înai	ntare							
$B_{C_{T}}[\%C_{T}]$	35.12	19.73	11.89	6.09	3.41	2.37			
P_{C_T} [% C_T]	69.15	64.35	28.54	19.53	10.27	7.60			
$I_{C_T} [\%C_T]$	77.56	67.31	30.92	20.46	10.82	7.96			
	Tabelul 3.4	. Incertitudini e	experimentale, p	escaj 1000 mm,	Fn 0.64 -1,04				
			Fro	oude					
Surse erori	0,64	0,72	0,80	0,88	0,96	1,04			
Geometria mo	delului								
B _S [%S]	1.02E+00	1.02E+00	1.02E+00	1.02E+00	1.02E+00	1.02E+00			
$\boldsymbol{B}_{\boldsymbol{S}}^{2}\boldsymbol{\theta}_{\boldsymbol{S}}^{2}\left[\%\boldsymbol{C}_{T}\right]$	5.482E-03	5.452E-03	5.180E-03	4.999E-03	4.831E-03	4.753E-03			
Viteza cărucio	rului								
B_{Uc} [% I_C]	1.420E-04	1.600E-04	1.770E-04	1.940E-04	2.120E-04	2.300E-04			
$B_{Uc}^{2}\theta_{Uc}^{2} [\%C_{T}]$	2.132E-06	2.127E-06	2.003E-06	1.919E-06	1.861E-06	1.836E-06			
Proprietățile a	oei din bazin		_	_	_				
$B_{T}[\%\rho_{t}]$	8.33E-01	8.33E-01	8.33E-01	8.33E-01	8.33E-01	8.33E-01			
$B_{\rho_1}[\%\rho_t]$	1.124E-03	1.124E-03	1.124E-03	1.124E-03	1.124E-03	1.124E-03			
$B_{\rho_2}[\%\rho_t]$	7.128E-03	7.128E-03	7.128E-03	7.128E-03	7.128E-03	7.128E-03			
$B_{\rho}[\%\rho_t]$	7.214E-02	7.214E-02	7.214E-02	7.214E-02	7.214E-02	7.214E-02			
$B_{\rho}^{2}\theta_{\rho}^{2} \left[\%C_{T} \right]$	2.765E-07	2.750E-07	2.613E-07	2.522E-07	2.437E-07	2.397E-07			
Rezistența la î	naintare a mod	elului							
B_{R1} [%R]	5.000E-03	5.000E-03	5.000E-03	5.000E-03	5.000E-03	5.000E-03			
B_{R^2} [%R]	1.727E+00	1.510E+00	1.372E+00	1.247E+00	1.141E+00	1.039E+00			
$B_{R}[\% R]$	1.727E+00	1.510E+00	1.372E+00	1.247E+00	1.141E+00	1.039E+00			
$B_R^2 \theta_R^2 [\% C_T]$	1.583E-02	1.204E-02	9.448E-03	7.533E-03	6.098E-03	4.975E-03			
Coeficientul re	zistenței la înai	ntare							
$B_{C_{T}}[\%C_{T}]$	2.37	2.00	1.82	1.71	1.61	1.53			
P_{C_T} [% C_T]	7.53	6.96	6.12	6.10	5.45	2.77			
I_{C_T} [% C_T]	7.79	7.20	6.36	6.31	5.66	3.13			

3.3.1.6. Profilul valului pe corp

Profilul valului pe suprafața modelului experimental se obține pe baza grilei fine de 5x5 mm lipită pe profil și a filmărilor perpendiculare pe planul diametral al profilului. Înălțimea valului se adimensionalizează prin împărțire la coarda profilului cu relația de reducere a datelor. În tabelul 3.8 se prezintă incertitudinile calculate pentru Fn=0,32 pentru fiecare punct de citire de pe suprafața liberă. Înălțimea valului, z, este prezentată în valori relative față de nivelul apei calme.

C [m]	x/C	Z [m]	B_{z} [m]	$\theta_{\rm z}$ [%C]	$B_{\!c}$ [m]	$ heta_{c}$ [%C]	$B_{\!_{arsigma}}$ [m]	$P_{\!_{\mathcal{S}}}$ [m]	I _ç [m]	Ι _ς [%C]
0	0	0.0283	2.000E-03	2.000E+00	2.000E-03	1.132E-01	4.006E-03	5.000E-03	6.407E-03	1.281E
0.05	0.1	-0.0001	2.000E-03	2.000E+00	2.000E-03	-4.000E-04	4.000E-03	5.000E-03	6.403E-03	1.281E
0.1	0.2	-0.0173	2.000E-03	2.000E+00	2.000E-03	-6.920E-02	4.002E-03	5.000E-03	6.405E-03	1.281E
0.15	0.3	-0.0239	2.000E-03	2.000E+00	2.000E-03	-9.560E-02	4.005E-03	5.000E-03	6.406E-03	1.281E
0.2	0.4	-0.0179	2.000E-03	2.000E+00	2.000E-03	-7.160E-02	4.003E-03	5.000E-03	6.405E-03	1.281E
0.25	0.5	-0.0027	2.000E-03	2.000E+00	2.000E-03	-1.080E-02	4.000E-03	5.000E-03	6.403E-03	1.281E
0.3	0.6	0.0058	2.000E-03	2.000E+00	2.000E-03	2.320E-02	4.000E-03	5.000E-03	6.403E-03	1.281E
0.35	0.7	0.0061	2.000E-03	2.000E+00	2.000E-03	2.440E-02	4.000E-03	5.000E-03	6.403E-03	1.281E
0.4	0.8	0.003	2.000E-03	2.000E+00	2.000E-03	1.200E-02	4.000E-03	5.000E-03	6.403E-03	1.281E
0.45	0.9	-0.0023	2.000E-03	2.000E+00	2.000E-03	-9.200E-03	4.000E-03	5.000E-03	6.403E-03	1.281E
0.5	1	0.0025	2.000E-03	2.000E+00	2.000E-03	1.000E-02	4.000E-03	5.000E-03	6.403E-03	1.281E

Tabelul 3.5. Incertitudini suprafața liberă pe profil, pescaj 1000 mm, Fn 0,32

Se observă că ponderea cea mai mare o au componentele legate de geometria modelului și limita de precizie a citirii. Incertitudinea de citire a suprafeței libere prin metoda utilizată este de 1,28 % din lungimea corzii și se pastrează și la celelalte valuri prezentate mai sus.

3.3.2.Calcul numeric al curgerii cu suprafață liberă în jurul unui profil 3.3.2.1.Introducere

În continuare, se prezintă studiul numeric al curgerii în jurul profilului vertical NACA 0012 ce penetrează suprafața liberă. Utilizând programul Ansys 12.1 au fost rezolvate ecuațiile RANS în manieră segregată, completate de ecuațiile modelului de turbulență pretabil pentru calcule cu suprafața liberă. În cazul de față au fost testate două modele de turbulență cu două ecuații, $k - \omega$ SST și $k - \varepsilon$ Realizable ($k - \varepsilon$ R). Pentru calculul suprafeței libere s-a utilizat tehnica VOF, considerându-se suprafața liberă ca fiind iso-suprafață de 0,5 apa/aer. Cuplarea presiuni și a vitezei a fost rezolvată cu algoritmul PISO. Presiunea a fost discretizată cu schema numerică PRESTO, pentru suprafața liberă s-a utilizat reconstrucția geometrică, iar pentru impuls și mărimi turbulente s-a folosit schema QUICK.

Modelul numeric are aceleași dimensiuni cu ale modelului experimenatal, și anume 0,5m coarda și 1,2 m anvergură. Domeniul computațional (figura 3.14, a,b) este de forma paralelipipedică, având o lungime egală cu anvergura profilului în amonte pentru a respecta condiția de radiație în amonte, două lungimi în aval și în lateral, pentru a permite sistemului de valuri produs de corp să părăsească domeniul de calcul doar prin frontiera aval. De asemenea, domeniul se extinde o anvergură sub profil și jumătate de anvergură deasupra profilului astfel evitându-se influența eventualelor vârtejuri de capat și a efectului de fund limitat.

Rezolvarea sistemului de ecuații s-a facut în regim nestaționar, cu pasul de timp corelat cu volumul celui mai mic volum finit. Au fost necesari în jur de 4000 de pași de timp pentru stabilizarea rezistenței la inaintare și a suprafeței libere, cu convergența obținută în maxim 20 de iterații pe fiecare pas de timp. Calculele au fost realizate pentru toate cele 12 viteze experimentale și pentru toate cele 4 pescaje.

3.3.2.2.Incertitudini numerice

Pentru calculele numerice necesare validării s-au identificat trei surse de posibile erori: erori de trunchiere, erori iterative și erori de discretizare. S-a utilizat solverul cu dublă precizie și în acest fel erorile de trunchiere au fost neglijate. Erorile iterative au fost neglijate, scăzând valoarea reziduurilor de la 10⁻³, recomandată de Fluent, la 10⁻⁴, obținându-se în același timp convergența pe fiecare pas de timp. Drept urmare, analiza erorilor și a incertitudinlor s-a concentrat pe erorile de discretizare, erorile cu ponderea cea mai mare în calculul numeric.

Au fost generate trei grile de discretizare (tabelul 3.9) cu raportul $\sqrt{2}$ și cu aceeasi distanță la perete adimensionalizată, $y^+ = 1$, astfel încât în stratul limită modelele de turbulență să calculeze în manieră similară.

Grila	Fina (1)	Medie (2)	Rară (3)	
Ni	2425174	1212587	606294	
∑V _i [m³]	59,04	59,04	59,04	
h _i [m ³]	0,00493	0.00698	0,00987	
r21		1,414		
r32			1.414	

Tabelul 3.6. Grile utilizate în studiul de grilă

Se consideră rezistență la înaintare ca valoare de referinta, și pe baza celor 3 grile se calculează incertitudinea de discretizare sau indexul de convergență a grilei, cum mai este cunoscut în literatura de specialitate. În continuare se prezintă tabelar calculul pentru numerele Froude 0,32, 0,48, 0,64. Variabila de studiu a fost considerată rezistentă la înaintare.

rapelui	3.7. Calcul	Incertituaini	de discretiza	ire

Model turbulență	Fn	Grila 1 Rt [N]	Grila 2 Rt [N]	Grila 3 Rt [N]	δG[%]	IG[%]
	0.16	0.92	0.95	0.97	3.62	4.52
	0.24	1.77	1.85	1.88	3.58	4.48
KINGGT	0.32	3.47	3.65	3.72	3.42	4.27
NV 331	0.40	5.81	6.13	6.26	3.65	4.56
	0.48	8.95	9.85	10.21	6.67	8.33
	0.56	13.60	15.10	15.70	7.21	9.01

	0.64	17.37	19.35	20.24	9.36	11.70
	0.72	20.05	22.47	23.81	14.76	18.46
	0.80	22.74	26.45	28.61	22.77	28.47
	0.88	25.21	29.83	32.42	23.56	29.45
	0.96	27.89	33.86	36.88	21.80	27.25
	1.04	30.80	38.66	42.51	24.52	30.65
	0.16	1.21	1.25	1.27	2.52	7.57
	0.24	2.63	2.74	2.80	6.18	7.72
	0.32	4.43	4.66	4.78	6.72	8.40
	0.40	6.76	7.16	7.37	7.04	8.80
	0.48	10.97	12.30	12.78	6.91	8.64
KER	0.56	15.36	17.12	17.80	7.13	8.91
	0.64	19.86	22.33	23.62	13.66	17.08
	0.72	23.17	26.04	27.75	18.35	22.94
	0.80	26.26	30.60	33.22	25.38	31.73
	0.88	29.14	35.34	38.92	29.11	36.39
	0.96	32.69	39.98	44.00	27.43	34.29
	1.04	36.26	45.87	50.84	28.36	35.45

Se observă că în zona numerelor Froude mari, unde fenomenul de spargere a valului este consistent nivelul incertitudinilor este mai mare decât în zona numerelor froude unde suprafața liberă nu este afectată de valul spart. Principiul de baza al teoriei VOF spune că cele două fluide considerate în calcul sunt imiscibile, iar cum fenomenul de spargere a valului se manifestă cu amestec de bule de aer în apă, iar acest lucru poate conduce la un grad ridicat al incertitudinii. O altă posibilă sursa de erori și incertitudini la viteze mari o constituie chiar grila însăși. Pe măsură ce crește valul, zona de grilă pentru suprafața liberă trebuia crescută astfel încât să cuprindă întreaga elevare a valului pe corp. Din considerente de resurse hardware, în calcul s-a mers pe o singură grilă fină pentru toate vitezele, de aici și probabil nivelul ridicat al incertitudinii la viteze mari.

3.3.3.Comparație CFD-EFD

Rezistența la înaintare a fost calculată (CFD) pentru ambele modele de turbulență testate și comparate cu rezultatele experimentale (EFD), și prezentate pentru pescajul de 1m în figura 3.17. Se observă că ambele modele de turbulență descriu calitativ evoluția rezistenței la înaintare în raport cu numărul Froude, dar cantitativ modelul de turbulență $k - \omega$ SST produce rezultate mai mari cu 60% , în medie, în raport cu cele experimentale față de 85% obținute cu modelul $k - \varepsilon$ R.

Figura 3.8. Comparație rezistența la înaintare experiment (EFD) - calcul numeric (CFD), pescaj 1m

În tabelul 3.11 sunt prezentate valoric rezultatele experimentale și numerice obținute cu grila fină, împreună cu eroarea de comparație, E, incertitudinea numerică, D, precum și incertitudinea validării, I_{val}. Se evidențiază că eroarea de comparație este mai mică decât incertitudinea validării, drept urmare erorile de modelare sunt nesemnificative.

Fn	EFD	CFD-KWSST	E=S-D	D	Ival	CFD-KER	E=S-D	D	Ival
	Rt[N]	Rt[N]	[%]	[%]	[%]	Rt[N]	[%]	[%]	[%]
0.16	0.506	0.925	82.77	4.52	82.9	1.211	139.27	7.57	139.5
0.24	0.982	1.775	80.75	4.48	80.9	2.628	167.66	7.72	97.1
0.32	1.597	3.475	117.59	4.27	117.7	4.430	177.38	8.40	96.6
0.4	3.062	5.805	89.59	4.56	89.7	6.757	120.69	8.80	92.9
0.48	5.936	8.953	50.82	8.33	51.5	10.969	84.79	8.64	79.2
0.56	8.972	13.595	51.53	9.01	52.3	15.356	71.16	8.91	71.2
0.64	11.019	17.368	57.62	11.70	58.8	19.862	80.25	17.08	68.4
0.72	12.607	20.047	59.01	18.46	61.8	23.166	83.75	22.94	66.6
0.80	14.047	22.739	61.88	28.47	68.1	26.264	86.97	31.73	69.1
0.88	15.463	25.214	63.06	29.45	69.6	29.135	88.42	36.39	68.6
0.96	16.829	27.895	65.75	27.25	71.2	32.691	94.25	34.29	64.0
1.04	18.458	30.804	66.89	30.65	73.6	36.262	96.46	35.45	61.9

Tabelul 3.8. Calcul incertitudini numerice

În figura 3.18 sunt prezentate comparativ valurile pe profilul hidrodinamic. Valurile calculate numeric sunt comparate cu valurile experimentale și prezentate grafic în figura 3.18, pentru numerele Froude 0,32, 0,48 și 0,64. Abscisa diagramelor reprezintă nivelul apei calme, iar valorile prezentate au fost adimensionalizate cu lungimea corzii profilului.

Figura 3.9. Profilul valului pe corp: comparație experiment-numeric

Calitativ ambele modele de turbulență surprind forma suprafeței libere pe profil, iar cantitativ se observă că în zona bordului de atac, ambele modele de turbulență reușesc să surprindă dezvoltarea valului experimental la valori apropiate. Modelul $k - \omega$ SST subapreciază golul de val, lucru vizibil la toate cele trei numere Froude, dar și a doua creastă de val la Fn=0,32,

pe când modelul $k - \varepsilon$ R supraapreciază golul de val, iar la Fn=0,32 reușește să se aproprie de a doua creastă de val.

Studiile numerice validate de cele experimentale au condus la stabilirea metodologiei de calcul numeric a curgerii cu suprafață liberă în jurul unui profil hidrodinamic. În studiile sistematice viitoare se va utiliza modelul de turbulență $k - \omega$ SST. Prin similitudine Froude se poate aproxima înălțimea valului din zona bordului de atac astfel încât grila de discretizare să surpindă cu acuratețe suprafața liberă deformată.

3.4.Curgerea in jurul jonctiunilor

Curgerea în jurul joncțiunilor dintre un profil și o placă se manifestă prin generarea unor structuri vorticale ca rezultat al interacțiuni dintre stratul limită de pe placă și stratul limită de pe profil. În literatura de specialitate au fost identificate două teste benchmark: unul pentru placa plană, și celelalt pentru profilul NACA 0012. Drept urmare, studiul pentru validarea metodologiei de calcul a joncțiunii imerse va avea două comonente: pe de o parte se va studia curgerea pe placa plană în raport cu rezultatele obținute de Yang și Voke (1993), și centralizate în cazul de studiu 73 din baza de date ERCOFTAC, iar pe de alta parte se va studia curgerea în jurul profilului aerodinamic NACA0012 în raport cu rezultatele obținute de NASA Langley Research Center- Turbulence Modeling Resource.

3.4.1.Curgerea pe placă plană

3.4.1.1.Benchmark

Studiul considerat pentru validarea curgerii vâscoase pe placa plana îl reprezintă experimentul numeric realizat de Yang și Voke în 1993 și făcut public cu numarul C.73 din baza de date ERCOFTAC, Classic collection. Studiul numeric constă în calculul utilizând LES (Large Eddies Simulation) la curgerea paralelă cu o placă plană de dimensiuni 300mmx20mm, fără gradient de presiune, cu 5% turbulență impusă și o viteză de 9,6 m/s.

3.4.1.2. Verificare și Validare

Ținându-se cont de particularitatea curgerii, au fost generate trei grile bidimensionale, 300mm x 30mm, cu rapoarte de rărire a grilei, $r_{ij} = 2$, în conformitate cu ASME V&V 20

(2009). Pentru a păstra acealeși condiții de rezolvare în stratul limită, grilele au fost generate pornind de la aceeași distanță la perete adimensionalizată, $y^+=1$.

-	and the set of the gen									
Grila	Fina (1)	Medie (2)	Rara (3)							
Ni	8000	2000	500							
∑A _i [m²]	0,009	0,009	0,009							
h _i [m²]	1,125E-06	4,500E-06	1,800E-05							
r21		2								
r32			2							

Tabelul 3.9. Grile generate în cadrul studiului

Simulările numerice au fost realizate cu Ansys Fluent v12, cu solverul bazat de presiune, aferent curgerii incompresibile. Frontiera de intrare a fost definită ca " velocity inlet, frontiera de ieșire a fost definită ca presure outlet. Pe placă s-a aplicat condiția de perete, "wall", iar pe frontiera superioară s-a aplicat condiția de simetrie, "symmetry". Toate calculele au fost realizate cu solverul cu dublă precizie, iar pentru convergență a fost impusă valoarea 10⁻⁶ pentru reziduuri. Drept urmare, erorile de rotunjire și iterative au fost neglijate, fiind considerate numai erorile de discretizare în determinarea erorilor numerice.

Au fost testate toate modelele de turbulență pentru curgerea în regim staționar disponibile în Ansys v12, iar rezultatele coeficientului de rezistență la înaintare împreună cu eroarea și incertitudinea de discretizare sunt prezentate în tabelul 3.13. Deși nu este un model de turbulență, a fost considerat totusi și cazul curgerii laminare, deoarece se studiază și tranziția de la curgerea laminară la curgerea turbulentă. Modelele de turbulență din familia $k - \varepsilon$ se

Tabelul 3.10. Erori și incertitudini de discretizare, pentru coeficientul de frecare							
Model turbulenta	Fina (1)	Medie (2) Cd [x10 ³]	Rara (3)	δ _G [%]	I _G [%]		
Laminar*	3.224	3.206	3.118	0.1370	0.1713		
SA	6.905	6.964	6.970	0.0902	0.1127		
$k - \varepsilon$ Standard	7.016	7.036	7.074	0.2931	0.3663		
$k - \varepsilon$ RNG	7.007	7.025	7.055	0.3517	0.4397		
$k - \varepsilon$ Realizable	7.021	7.043	7.088	0.2932	0.3665		
$k - \omega$ Standard	6.614	6.548	6.004	0.1388	0.1735		
$k - \omega$ SST	6.348	6.594	6.124	4.2711	5.3389		
$k - \omega$ SST-TF	6.713	6.594	6.124	0.5959	0.7448		
RSM-LPS-EWT	6.630	6.716	6.990	0.6042	0.7553		
RSM-LR	6.180	5.805	5.390	6.0764	7.5955		
RSM-LR-TF	5.243	4.874	4.435	7.0378	8.7972		

pretează mai bine pe grilele cu $y^+>30$. Drept urmare, pentru a putea fi utilizate pe grila de studiu, la $y^+=1$, au fost activate funcțiile la perete prin opțiunea " Enhanced wall treatment".

Rezultatele obținute cu grila fină se compara cu cele obținute de Yang și Voke, și împreună cu eroarea de validare și incertitudinea de validare, sunt prezentate în tabelul 3.14.

l'abelui 3.11. Incertitudini de validare pentru coeficientul de frecare								
Model turbulenta	Fina (1)	Experiment.	E	D	I _{val}			
	Cd	[x10°]	[%]	[%]	[%]			
Laminar*	3.224	2.970	8.570	0.1713	8.569			
SA	6.905	6.883	0.318	0.1127	0.297			
$k - \varepsilon$ Standard	7.016	6.883	1.940	0.3663	1.905			
$k - \varepsilon$ RNG	7.007	6.883	1.804	0.4397	1.750			
$k - \varepsilon$ Realizable	7.021	6.883	2.001	0.3665	1.967			
$k - \omega$ Standard	6.614	6.883	-3.908	0.1735	3.904			
$k-\omega$ SST	6.348	6.883	-7.767	5.3389	5.642			
$k - \omega$ SST-TF	6.713	6.883	-2.467	0.7448	2.351			
RSM-LPS-EWT	6.630	6.883	-3.680	0.7553	3.601			
RSM-LR	6.180	6.883	-10.206	7.5955	6.816			
RSM-LR-TF	5.243	6.883	-23.818	8.7972	22.134			

Se observă că modelul de turbulență cu o ecuație, Spalart Allmaras produce rezultatul cel mai apropiat de valoarea experimentală, iar valorile cele mai mari ale erorii de validare se obțin cu modelul Reynolds Stress Model cu opțiunea Low Reynolds transitional flow.

3.4.2.Curgerea în jurul profilului NACA 0012

3.4.2.1.Benchmark

Pentru validarea curgerii vâscoase în jurul profilului aero-hidrodinamic NACA 0012 a fost ales studiul prezentat de NASA Langley Research Center și prezentat pe Turbulence Modeling resources, în cazul curgerii fără unghi de atac la număr Reynolds 3x10⁶. Profilul NACA 0012 este generat cu polinomul:

$$y = \pm 0.6 \cdot \left[0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4 \right]$$
(3.69)

3.4.2.2.Verificare și Validare

Au fost generate trei grile tridimensionale de tip O-H, cu rapoarte de rărire a grilei, $r_{ij} = \sqrt{2}$, în conformitate cu ASME V&V 20 (2009), pe un domeniu de calcul circular cu raza de minim trei lungimi de coarda. Generarea grilei fină se realizează prin extrudare hiperbolică, pornind de la coarda profilului, discretizată cu 150 de noduri, cu rația de creștere a celulelor în stratul limită, r = 1,1, obținându-se forma bidimensională de tipul O având 301x94 de celule. Pe inaltimea domeniului de calcul, sau pe anvergura profilului, grila de bază se extrudează pe lungime unitară cu 80 de noduri echidistante, obținându-se în final grila cu 301x94x80 noduri. Pentru a păstra acealeși condiții de rezolvare în stratul limită, grilele au fost generate pornind de la aceeași distanță la perete adimensionalizată, y⁺=1.

Grila	Fina (1)	Medie (2)	Rara (3)
Ni	2204100	771680	269100
∑V _i [m³]	34.3	34.3	34.3
h _i [m ³]	1.555E-05	4.441E-05	1.274E-04
r21		1,414	
r32			1,414

În tabelul 3.15 sunt prezentate grilele generate în cadrul studiului, fină, medie și rară. **Tabelul 3.12.** Grile generate în cadrul studiului

Au fost testate toate modelele de turbulență RANS pentru curgerea în regim staționar disponibile în Ansys v12, iar rezultatele coeficientului de rezistență la înaintare împreună cu eroarea și incertitudinea de discretizare sunt prezentate în tabelul 3.16. Cele mai mici valori ale incertitudinii de discretizare se obțin cu modelele $k - \omega$ Standard și Reynolds stress model-Linear pressure strain, în jur de 3%, iar cele mai mari valori se obțin cu modelul Reynolds stress model cu opțiunea Low Reynolds.

Model turbulente	Fina (1)	Medie (2)	Rara (3)	5 [0/]	11 [0/]
		Cd [x10 ³]		∪ _G [%]	U _G [70]
SA-VB	7.426E-03	8.117E-03	9.026E-03	29.40	36.75
SA-S/VB	7.363E-03	8.055E-03	8.964E-03	29.78	37.22
$k - \varepsilon$ Standard	1.086E-02	1.998E-02	1.658E-02	49.94	62.42
$k - \varepsilon$ RNG	6.497E-03	9.475E-03	1.466E-02	61.87	77.33
$k - \varepsilon$ Realizable	4.986E-03	5.823E-03	6.948E-03	48.89	61.11
$k-\omega$ Standard	1.724E-02	2.061E-02	4.558E-02	3.06	3.82
$k-\omega$ SST	7.102E-03	6.121E-03	7.423E-03	42.30	52.87
$k - \omega$ SST-TF	6.263E-03	4.372E-03	5.365E-03	33.40	41.75
RSM-LPS-EWT	4.886E-03	5.738E-03	1.254E-02	2.50	3.12
RSM-LR	4.520E-03	5.315E-03	6.302E-03	72.65	90.82

Tabelul 3.13. Erori și incertitudini de discretizare, pentru coeficientul de frecare

Rezultatele obținute cu grila fină se compară cu cele obținute de Ladson, 1988, Gregory și O'Reilly, 1970, Abbott și von Doenhoff,1959, și Jespersen et al. 2016, și impreuna cu eroarea de validare și incertitudinea de validare, sunt prezentate în tabelul 3.17.

Tabelul 3.14. Incentitudini de Validare pentru coencientul de riecare								
Model turbulenta	Fina (1)	Experiment	E	D	Ival			
	Cd	[x10 ³]	[%]	[%]	[%]			
SA-VB	7.426	8.255	-10.042	36.750	38.097			
SA-S/VB	7.363	8.255	-10.803	37.219	38.755			
$k - \varepsilon$ Standard	10.857	8.255	31.530	62.421	69.932			
$k - \varepsilon$ RNG	6.497	8.255	-21.293	77.334	80.212			
$k - \varepsilon$ Realizable	4.986	8.255	-39.601	61.107	72.817			

$k - \omega$ Standard	17.236	8.255	108.804	3.824	108.871
$k-\omega$ SST	7.102	8.255	-13.960	52.869	54.681
$k - \omega$ SST-TF	6.263	8.255	-24.127	41.751	48.220
RSM-LPS-EWT	4.886	8.255	-40.808	3.120	40.928
RSM-LR	4.520	8.255	-45.242	90.817	101.462

Dacă modelul $k - \omega$ standard se exclude din analiza erorilor, se observă ca modelul de turbulență cu o ecuație, Spalart Allmaras, cu ambele opțiuni, Voticity based și Strain/Vorticity-based, produce rezultatul cel mai apropiat de valoarea experimentală, în limita a 10%, iar diferențele cele mai mari se obțin cu modelul Reynolds stress model cu opțiunea Low Reynolds. În ceea ce privește incertitudinea de validare, modelele care obțin valorile minim, 38%, și maxim, 101 %, se păstrează.

Capitolul 4. Studiul curgeri în jurul joncțiunii fără suprafață liberă

4.1. Introducere

În acest capitol se prezintă rezultatele investigatiilor numerice privind curgerea fără suprafată liberă în jurul joncțiunilor, mai precis studiul influenței unghiului dintre profil și placă, studiul influenței curburii plăcii, studiul influenței vitezei curentului asupra joncțiunii considerată complet imersată. Influenta unghiului dintre profil si placă se studiază prin înclinarea profilului pe trei direcții: lateral, amonte și aval, cu câte trei pași, 15, 30 și 45 de grade în raport cu direcția verticală normală la placă, și împreuă cu cazul profilului vertical drept însumând zece poziții geometrice ale profilului în raport cu placa de bază. Pentru studiul influenței curburii plăcii de bază se curbează placa plană cu câte patru raze de curbură într-o parte și alta a plăcii plane obtinându-se plăci concave si convexe. Curbarea placii se realizează prin modificarea coordonatelor nodurilor de grilă, astfel încât aria plăcii precum si distributia liniilor de grilă în raport cu profilul să fie identice cu cazul plăcii plane. Pentru studiul influentei vitezei se considera curgerea la trei numere Reynolds: 10⁶, 5x10⁶ si 10⁷, astfel încât să acopere zona de curgere a unui profil montat pe un învelis de navă care joaca rol de dispozitiv de corectare a curgerii (ESD). Drept urmare, rezultatele prezentate mai jos centralizează 9x10x3 (curbură placă x unghi profil x viteze) = 270 de cazuri de calcul, respectând, bineînteles, metodologia de calcul împreuna cu modelul numeric stabilite în capitolul anterior.

4.2. Obiective

Pornind de la factorii care influențează curgerea în jurul joncțiunilor descriși în Capitolul 1, obiectivele care definesc structura prezentului capitol sunt:

Studiul influenței înclinării profilului în raport cu placa de baza;

Studiul influenței plăcii de bază plană, concavă și convexă;

>Studiul influenţei vitezei

4.3.Model numeric

4.3.1. Condiții la limită

Fiind de forma circulară, domeniul de calcul prezintă cinci frontiere: profil, placa de bază, intrare fluid, ieşire fluid, și frontiera superioară, (figura 4.1). Pe suprafaţa profilului cât și pe placa de bază se impune condiția de nepenetrabilitate (*wall*). Dacă în realitate obiectele se deplasează prin fluid, în simulările numerice obiectul este ținut pe poziție fixă și se deplasează fluidul. Astfel ca pe frontiera de intrare se declară viteza la infinit amonte prin condiția "*velocity inlet*". Cum curgerea este aliniată planului orizontal se declară numai componenta orizontală longitudinală pentru unghi de atac nul. Pe frontiera de ieșire a fluidului din domeniu se utilizeaza frontiera de presiune, *pressure outlet*. Curgerea fiind turbulentă, pe frontierele de intrare și ieșire se declară condiții a limită turbulente. În cazul modelului de turbulență Spalart-Allmaras, Fluent recomandă pentru raportul dintre vâscozitatea turbulentă și cea moleculara, μ_t/μ , valoara 5. Pe frontiera superioară se impune condiția simplității și robusteții. Testele inițiale au condus la raza minimă a domeniului de trei lungimi de coardă, dimensiune la care influența frontierelor asupra curgerii din vecinătatea profilului nu este resimțită.

4.3.2. Scheme numerice

Ecuațiile RANS împreună cu ecuația aferentă modelului de turbulență Spalart-Allmaras sunt rezolvate cu Ansys v12, prin metoda volumului finit. Presiunea și viteza sunt cuplate prin algoritmul SIMPLEC. Presiunea se interpolează folosind schema standard, iar impulsul și vâscozitatea turbulentă cu scheme de ordinul întâi și al doilea în contracurent. Pentru stabilitatea soluției, mai întâi se obține convergența pe baza schemelor de ordinul întâi și apoi se continuă calculul până se obține convergența cu schemele de ordinul al doilea în contracurent.

Toate calculele au fost realizate cu solverul cu dublă precizie, iar pentru convergență a fost impusă valoarea 10⁻⁶ pentru reziduuri.

4.3.3.Generarea grilei

Generarea grilei se realizează prin extrudare hiperbolică, pornind de la coarda profilului, discretizată cu 150 de noduri, pe direcția $O\eta$, cu rația de creștere a celulelor în stratul limită, r = 1,1, obținându-se forma bidimensională de tipul O (figura 4.2) având 301x94 de celule. La pragul de 94 de celule se obține raza minimă de trei lungimi de coarda impusă de testele pilot. Prima linie de grilă corespunde distanței adimensionale $y^+ = 1$. Grila de discretizare din planul de baza este aceeași grila considerată *fina* în calculele anterioare de verificare și validare (Cap 3.8).

Figura 4.2. Grila O-H

Brdrofold E-n

Figura 4.3. Grila O-H pe profil și placă

Pentru a studia influența unghiului de înclinare a profilului asupra joncțiunii, se extrudează planul de baza $O\xi\eta$ pe direcția fiecărui unghi de înclinare, obținându-se o rețea de

301x94x80 de noduri ce respectă criteriile de calitate, ortogonalitatea și spațierea liniilor de grilă (figura 4.3). În toate cele zece ipostaze ale profilului, se păstrează secțiunea orizontală NACA 0012 paralelă curgerii.

4.4.Rezultate și discuții

Curgerea se presupune a fi complet turbulentă iar simulările numerice au fost efectuate mai întâi pentru numărul Reynolds 10⁶ pentru a clarifica mecanismele curgerii, dar și de a oferi o descriere detaliată a forțelor ce acționează în jurul joncțiunii. Atunci când fluidul se deplasează de-a lungul plăcii de bază și întâlnește un obstacol, profilul, apare fenomenul de blocaj care, datorită gradienților mari adverși de presiune, conduc la separarea stratului limită, dar și la dezvoltarea de structuri vorticale. În funcție de condițiile de curgere, aceste structuri vorticale pot fi formate din una sau mai multe vârtejuri, contrarotative, figura 4.4. Se observă un vârtej principal, al cărui nucleu se află la aproximativ 2% din lungimea corzii în amonte de profil și 0,2 % din lungimea corzii în vecinătatea plăcii, dar și un vârtej secundar de rotație opusă celui primar.

(c)

Figura 4.4. Structuri vorticale

Filamentele din vârtejurile ce se formează în amonte se deplasează înspre aval, de-a lungul profilului, formând așa numitul sistem de potcoave de vârtejuri. Intensitatea vârtejurilor scade odată cu departarea de placă și de bordul de atac al profilului.

4.4.1.Influența unghiului de înclinare al profilului

Influența unghiului dintre profil și placă se studiază prin înclinarea profilului pe trei direcții: lateral, amonte și aval, cu câte trei pași, 15, 30 și 45 de grade față de planul vertical,

menținând în permanență coarda profilului paralelă cu direcția curgerii. Împreună cu cazul profilului vertical drept însumează zece poziții geometrice ale profilului în raport cu placa de bază.

Mai întâi s-a studiat influența unghiului de înclinare asupra joncțiunii pentru profilul înclinat în plan diametral, amonte și aval, montat pe placa plană. În cazul profilului înclinat spre amonte, vezi figura 4.6, se observă că zona expusă gradienților mari ai presiunii se micșorează și se apropie de zona joncțiunii odată cu creșterea unghiului de înclinare. În cazul profilului înclinat spre aval, figura 4.7, gradienții mari de presiune se deplasează către aval și către vârful profilului depărtându-se de zona bordului de atac al joncțiunii, ca efect al disipării vâscoase.

Figura 4.5. Distribuție de presiuni-comparație între profilul drept (a) și înclinat spre amonte cu 15°(b), 30°(c) și 45°(d), montat pe placa plană

Figura 4.6. Distribuție de presiuni-comparație între profilul drept (a) și inclinat spre aval cu 15°(b), 30°(c) și 45°(d), montat pe placa plană

De asemenea se observă scăderea intensității turbulente a structurilor turbulente de la profil înclinat spre amonte la profil înclinat spre aval prin liniile de curent bidimensionale, figurile 4.8 și 4.9, și tridimensionale trasate în figura 4.10. La înclinarea amonte cu 15°, se observă o concentrare a nucleului vârtejului principal impreuna cu o apropiere de de cel secundar. De asemenea, se mai observă dezvoltarea unei noi perechi de vârtejuri contarotative, în amonte de vârtejul principal. Asa cum reiese din imagini odată cu creșterea unghiului de înclinare sistemul de vârtejuri este presat între suprafețele solide, pănă la diminuarea efectelor sale.

Figura 4.7. Linii de curent - comparație între profilul drept (a) și înclinat spre amonte cu

15°(b), 30°(c) și 45°(d), montat pe placa plană

La profilul înclinat spre aval liniile de curent se apropie de muchia de atac a profilului conducând la o rocadă a poziției vârtejului principal cu cel secundar, împreună cu creșterea în intensitate și a nucleului vârtejului principal. Dacă la profilul vertical drept, vârtejul secundar este în proximitatea bordului de atac, la 30 și 45 de grade acesta se depărtează de profilul de atac.

Figura 4.8. Linii de current - comparație intre profilul drept (a) și înclinat spre amonte cu 15°(b), 30°(c) si 45°(d), montat pe placa plană

În cazul înclinării profilului către lateral, câmpul de curgere nu mai este simetric, nici pe placă și nici pe profil. Prin înclinare câtre lateral se induce o translație a punctului de stagnare către partea cu unghiul mai mic. Efectul înclinării spre lateral se observă în figura 4.11, prin liniile de curent trasate în vecinătatea plăcii dar și prin distribuția contururilor de presiune de pe profil. Se observă același fenomen ca în cazul curgerii cu unghi de atac (Kuwahara, 2000).

În ceea ce privește evoluția coeficienților rezistenței la înaintare pe placa suport, studiile numerice au arătat o scădere cu 0.5% în medie, dar nu mai mult de 1%, în cazul plăcii plane indiferent de direcția de înclinare a profilului, a plăcii concave și convexe pentru profilul înclinat amonte și aval. De asemenea s-a mai observat o scădere cu 9% a coeficientului total al rezistenței la înaintare pentru placa concavă si convexă la înclinarea profilului hidrodinamic spre lateral. Drept urmare, în continuare se prezintă evoluția coeficienților rezistenței la înaintare doar pentru profilul hidrodinamic.

În figura 4.12 se prezintă coeficienții de rezistență la înaintare pentru profilul montat pe placa plană. Sunt trasate curbele pentru coeficienții de rezistență totali, C_d , de presiune vâscoasă, C_{dp} , și pentru coeficienții de rezistență văscoasă, C_{dv} , pentru fiecare din cele patru unghiuri de înclinare. Se observă că odată cu creșterea unghiului de înclinare, coeficienții totali cresc pentru profilul înclinat lateral și descresc pentru profilul înclinat amonte și aval. Coeficienții de vâscozitate cresc la fel pentru profilul înclinat lateral, dar scad cu diferențe foarte mici pentru profilul înclinat în planul diametral. Se mai observă o tendință de scădere la coeficienții de presiune odată cu creșterea unghiului de înclinare.

Figura 4.10. Coeficienții de rezistență în cazul profilului montat pe placa plană, Rn 10⁶

Se observă o creștere de până la 33% a coeficientului total în cazul inclinării spre lateral și o scădere a acestuia cu aprox 3% în cazul înclinării în planul diametral amonte și aval.

4.4.2.Influența curburii plăcii: concavă / convexă

În practica navală puține sunt cazurile când un profil hidrodinamic este montat pe o placa plană. Drept pentru care, profilul s-a montat pe placa curbă, concavă și convexă, și s-a studiat influența curburii plăcii asupra curgerii în jurul joncțiunilor. S-au considerat patru raze de curbură, 1,5C (R1), 2C (R2), 3C (R3) și 6C (R4) unde C reprezintă lungimea corzii profilului. În figura 4.15 se prezintă o schiță cu profilul montat pe placa curbată la diverse raze de curbură, dar și o secțiune transversală, planul YOZ, în proximitatea profilului hidrodinamic, în dreptul grosimii maxime, t=0.12m. Pentru fiecare rază de curbură, convexă

sau concavă, înclinarea profilului se păstreaza ca în cazul plăcii plane, si anume trei unghiuri (15°, 30°, 45°) de înclinare spre lateral, trei unghiuri (15°, 30°, 45°) în planul de simetrie spre amonte și trei unghiuri (15°, 30°, 45°) în planul de simetrie înspre aval.

Pentru a putea compara razele de curbură, este necesar ca nodurile să prezinte aceeaşi distribuție pe placă. Acest lucru se poate realiza prin alterarea coordonatelor carteziene ale nodurilor de pe grila bidimensională inițială aplicând relațiile:

$$y_{1} = y_{0} + R \sin\left(\frac{y_{0}}{R}\right)$$

$$z_{1} = z_{0} + R\left[1 - \cos\left(\frac{y_{0}}{R}\right)\right] z_{1} = z_{0} + R\left(1 - \cos\left(\frac{y_{0}}{R}\right)\right) - \text{pentru placa convex}\breve{a}$$

$$z_{1} = z_{0} - R\left[1 - \cos\left(\frac{y_{0}}{R}\right)\right] z_{1} = z_{0} - R\left(1 - \cos\left(\frac{y_{0}}{R}\right)\right) - \text{placa concav}\breve{a}$$

$$(4.1)$$

unde: y_1 şi z_1 reprezintă coordonatele finale iar y_0 şi z_0 coordonatele inițiale ale punctelor din grilă, *R* reprezintă raza de curbura a plăcii şi se obține împărțind y_{max} al grilei plane la 0,5, 1, 1,5, şi 2.

Figura 4.11. Schiță cu profil vertical montat pe placa curbă

4.4.2.1.Placa concavă

La fel ca în cazul profilului montat pe placa plană, coeficienții de vâscozitate cresc pentru înclinarea spre lateral și cu panta foarte mică pentru înclinarea amonte/aval. Coeficienții de presiune vâscoasă și cei totali descresc odată cu creșterea unghiului de înclinare, mai puțin coeficienții totali pentru cazul lateral 45 de grade.

În figura 4.20 se prezintă influența curburii plăcii asupra forțelor ce acționează pe profilul hidrodinamic înclinat în toate direcțiile, pentru numărul Reynolds 10⁶. Scăderea razei de curbură determină gradienți mari de presiune, materializați prin coeficienți mari ai rezistenței la înaintare, situație valabilă pentru toate direcțiile de înclinare a profilului.

Figura 4.12. Influența curburii plăcii asupra coeficienților rezistenței la înaintare - placă concavă, Rn 10⁶

4.4.2.2.Placa convexă

În figura 4.27 se prezintă influența curburii plăcii convexe asupra forțelor ce acționează pe profilul hidrodinamic înclinat în toate direcțiile, pentru fiecare număr Reynolds considerat. Scăderea razei de curbură determină gradienți mari de presiune, materializați prin coeficienți mari ai rezistenței la înaintare.

Figura 4.13. Influența curburii plăcii asupra coeficienților rezistenței la înaintare - placă convexă, Rn 10⁶

4.4.3.Influența numărului Reynolds

Pentru studiul influenței vitezei asupra curgerii în jurul joncțiunii au fost considerate trei numere Reynolds 10⁶, 5x10⁶ și 10⁷. Dependența de unghiul de înclinare și de curbură a plăcii a fost deja prezentată anterior, independentă pentru fiecare număr Reynolds. În cele ce urmează se prezintă rezultatele centralizate pentru toate cele trei viteze considerate.

Odată cu creșterea numărului Reynolds, crește și presiunea dinamică. Acest lucru se observă în figura 4.30, în care se prezintă evoluția vârtejului secundar. Datorită creșterii presiunii dinamice nucleul vârtejului secundar se deplasează către muchia de atac a profilului, iar vărtejul iși pierde din intensitatea turbulentă. Nu numai structurile vorticale se modifica ci și distribuția de presiuni în jurul joncțiunii. Un avantaj al creșterii numărului Reynolds este acela că zona de presiune maximă, unde viteza se anulează, pe profil se micșorează, acest lucru se poate observa în figura 4.31 pe izo-contururile de presiune trasate atât pe placa cât și pe profilul înclinat inspre lateral.

Variația coeficienților rezistenței totale în raport cu numărul Reynolds pentru profilul montat pe placa plană este prezentată în figura 4.32. Se observă o scădere a valorilor coeficienților în raport cu numărul Reynolds, mai puțin la înclinările spre lateral cu 30 și 45 de grade, unde coeficienții au valoarea cea mai mare la Reynolds 5x10⁶.

Figura 4.16. Variația coeficienților de rezistență ai profilului montat pe placa plană

În cele ce urmează se prezintă variația coeficienților rezistenței totale în raport cu numărul Reynolds pentru profilul înclinat lateral, amonte și aval montat pe placa concavă sau convexă.

Figura 4.18. Coeficienții de rezistență ai profilului înclinat amonte pe placă concavă

Figura 4.19. Coeficienții de rezistență ai profilului înclinat aval pe placă concavă

Figura 4.20. Coeficienții de rezistență ai profilului înclinat lateral pe placă convexă

Figura 4.21. Coeficienții de rezistență ai profilului înclinat amonte pe placă convexă

Figura 4.22. Coeficienții de rezistență ai profilului înclinat aval pe placă convexă

Se observă același tipar, al scăderii coeficienților de rezistență la înaintare chiar și în cazurile înclinării laterale atât pe placa concavă cât si pe placa convexă unde maximul este la numărul Reynolds 5x10⁶.

Capitolul 5. Curgerea cu suprafață liberă în jurul joncțiunilor

5.1.Introducere

Curgerea cu suprafată liberă în jurul unui profil hidrodinamic montat pe o placă situată în apropierea suprafeței libere este una complicată ce îmbină fenomene neliniare, tridimensionale si turbulente ca stratul limită de pe suprafetele solide, sistemul de potcoave de vârtejuri dezvoltat în jurul jonctiunilor si efectele suprafetei libere ca siaj turbulent, spargerea valului. Drept urmare, în acest capitol se prezintă rezultatele studiului numeric privind curgerea cu suprafată liberă în jurul jonctiunilor, mai precis studiul influentei unghiului dintre profil și placă, studiul influenței vitezei curentului, studiul influenței suprafeței libere asupra joncțiunii. La fel ca în studiile fără suprafață liberă din capitolul anterior, influența unghiului dintre profil si placa se studiază prin înclinarea profilului pe trei directii: lateral, amonte și aval, cu câte trei pași, 15, 30 și 45 de grade. Pentru studiul influenței vitezei se considera curgerea la cinci numere Froude, de la 0,16 la 0,48, astfel încât să acopere zona de curgere a unui profil montat pe un învelis de navă care joacă rol de dispozitiv de corectare a curgerii (ESD), dar și domeniul de viteze acoperit de experimentul propriu din bazinul de carene în jurul profilului penetrant drept, prezentat în capitolul 3. Pentru a studia influenta suprafetei libere, se modifică sistematic înăltimea zonei imersate. Datorită complexitătii grilei de discretizare generată pe un domeniu de calcul cu restrictii impuse de rezolvare numerică a suprafeței libere în programul Ansys Fluent, au fost efectuate simulări numerice doar pentru joncțiunea dintre profilul hidrodinamic și placa plană, urmând ca în perspectivă odată cu dezvoltarea algoritmului specific open channel flow din Fluent sau cu alte programe de calcul hidrodinamic să fie abordată și problema generării grilelor cu frontiere curbe pentru calculul cu suprafată liberă. Bineînteles trebuie mentionat faptul că toate simulările numerice au la baza metodologia de calcul stabilită în capitolul 3 prin validare experimentală.

5.2. Objective

Pornind de la factorii care influențează curgerea în jurul joncțiunilor descriși în Capitolul 1, obiectivele care definesc structura prezentului capitol sunt:

>Studiul influenței înclinării profilului în raport cu placa de bază;

Studiul influenței adâncimii;

>Studiul influenței vitezei.

5.3. Model numeric

5.3.1.Condiții la limită

La curgerea cu suprafață liberă, profilul penetrant generează un sistem de valuri divergente a căror înfăşurătoare se propagă cu un unghi de aproximativ 20°. Pentru a evita radiația valurilor înspre amonte se dispune frontiera de intrare la 1,5 lungimi de coarda în amonte de profil. Pentru a se evita reflexia sistemului de valuri din frontierele laterale, producând instabilități numerice, lățimea domeniului de calcul precum și lungimea zonei de aval se stabilesc astfel încât sistemul de valuri să părăseasca domeniul integral prin frontiera de aval. Drept urmare, se dispune frontiera de aval la cinci lungimi de coardă față de bordul de fugă al profilului, iar frontierele laterale la două 2,5 lungimi de coardă față de planul de simetrie al profilului. Poziția frontierei superioare se alege astfel încât să permită elevarea naturală a suprafeței libere (figura 5.1). Testele inițiale au stabilit că 0,5 din lungimea corzii profilului este suficent.

Figura 5.1. Dimensiuni domeniu de calcul

Figura 5.2. Condiții la limită

Curgerea cu suprafață liberă este guvernată de forța gravitațională și de forțele inerțiale, reprezentată prin parametrul adimensional Froude. Drept urmare condițiile la limită impuse trebuie să țină cont de efectele gravitației. În acest sens domeniul de calcul se modelează pentru curgerea în canal (*open channel flow*). În figura 5.2 este prezentat domeniul computațional împreună cu condițiile la limita impuse. Se definesc frontierele de intrare și ieșire a fluidului din domeniu ca frontiere de presiune, de tipul *pressure inlet si outlet*

5.3.2.Scheme numerice

Sistemul de ecuații RANS împreună cu ecuațiile modelului de turbulență $k-\omega$ SST sunt rezolvate în regim nestaționar, în maniera cvasi-explicită, folosind metoda volumului finit din Ansys Fluent. Gradienții soluției sunt obținuți prin aplicarea teoremei Green-Gauss bazată pe celule. Rezolvarea problemelor cu suprafața liberă din programul Fluent se realizează prin metoda VOF și se rezolvă utilizând schema reconstrucției geometrice. Cuplarea vitezei și a presiunii se rezolvă prin algoritmul PISO, impus de calculul nestaționar. Presiunea este descrisă prin schema PRESTO, iar termenii convectivi și difuzivi se rezolvă prin schema QUICK.

5.3.3.Generarea grilelor

Dacă în cazul joncțiunii complet imersate, grila se generează prin extrudare pe direcția anvergurii profilului rezultând domenii de calcul cu frontierele înclinate cu același unghi cu al profiulului, în calculele cu suprafața liberă, condițiile la limită implementate în Fluent impun frontiere verticale atât pentru intrare cât și pentru ieșirea fluidelor din domeniu. În figura 5.3 este prezentat domeniul de calcul pentru cazul profilului înclinat cu 30 de grade în planul de simetrie spre aval unde se pot observa liniile de delimitare a grilelor componente.

Figura 5.3. Domeniul de calcul multibloc pentru profil înclinat cu 30° în planul de simetrie spre aval

Curgerea în jurul joncțiunii este descrisă de fenomene ca interacțiunea a două straturi limită, unul pe placă și celalalt pe profil. În același timp grilă trebuie să satisfacă condițiile de calitate ca spațierea și ortogonalitatea pe frontierele solide. În plus dacă se adaugă și suprafața liberă, discretizarea pentru rezolvarea prin metoda VOF trebuie să descrie o bandă de noduri condensate în zona unde se asteaptă formarea sistemului de valuri. Ținând cont de toate condițiile impuse pentru rezolvarea problemelor fizice impuse, se generează o grilă multibloc structurată care să se suprapună perfect pe domeniul de calcul rectangular, care să asigure linii de grilă ortogonale și condensate pe placa de bază și pe profilul hidrodinamic dar care în același timp să asigure și spațierea minimă necesară surprinderii elevării suprafeței libere. Astfel se obține o grilă de discretizare cu aproximativ două milioane de celule hexaedrale. În figura 5.4 este prezentat domeniul de calcul discretizar în stil multibloc structurat de tipul C-H.

5.4.Rezultate și discuții

5.4.1.Influența unghiului de înclinare al profilului

Influența unghiului dintre profil și placă se studiază prin înclinarea profilului pe trei direcții: lateral, amonte și aval, cu câte trei pași, 15, 30 și 45 de grade, pornind de la poziția profilului vertical drept, menținând în permanență coarda profilului paralelă cu direcția curgerii. Împreună cu cazul profilului vertical drept formează setul de ipostaze geometrice ale profilului în raport cu placa de bază.

În cele ce urmează se prezintă structurile vorticale ce se dezvoltă la întâlnirea liniilor de curent cu bordul de atac al profilului hidrodinamic datorită fenomenului de blocaj.În figura 5.5 se prezintă sistemul de două vârtejuri contrarotative, unul principal de intensitate mai mare și unul secundar de intensitate mai mică situate în proximitatea bordului de atac al profilului cât și evoluția în raport cu înclinarea profilului pe direcția normală la planul vertical de simetrie. Se observă influența plăcii de bază pe masură ce profilul se înclină, determinând vârtejul principal să se deplaseaze spre profilul hidrodinamic.

Figura 5.5. Linii de curent - comparație între profilul drept și înclinat spre lateral

La profilul înclinat spre amonte (figura 5.7) se observă că vârtejul principal se deplasează către placa de bază și datorită gradienților mari de presiune generați de prezența celor două suprafețe solide, la 30° și 45° nu se mai formează structurile vorticale, fenomen susținut și de prezentarea graficș a vectorilor viteză în planul de simetrie în amonte de profil (figura 5.8).

Figura 5.6. Linii de curent - comparație între profilul drept și înclinat spre amonte

Când profilul este înclinat spre aval liniile de curent se apropie de muchia de atac a profilului conducând la o rocadă a poziției vârtejului principal cu cel secundar, împreună cu creșterea în intensitate și în diametru a nucleului vârtejului principal. Dacă la profilul vertical drept, vârtejul secundar este în proximitatea bordului de atac, la 30 și 45 de grade acesta se depărtează de profilul de atac.

Figura 5.7. Linii de curent - comparație între profilul drept și înclinat spre amonte

Se mai poate observa că dacă la profilul vertical prezența profilului conduce liniile de curent pe direcție descendentă, unghiul mare de înclinare permite alunecarea liniilor de curent în direcție orizontală și ascendentă. Acest fapt permite o micșorare a gradientului de presiune și implicit ușurează translația vârtejului principal către profilul hidrodinamic.

În figurile 5.11 și 5.12 se prezintă evoluția suprafeței libere în raport cu unghiul de înclinare al profilului spre lateral. Se observă că asimetria geometrică induce diferențe între cele două borduri ale profilului și a sistemului de valuri generat, asimetrie în câmpul de curgere, dar și o defazare a alternanței creastă/gol de val. Prin culorile galben și roșu se prezintș crestele de val iar prin nuantele de albastru se prezinta golul de val. De asemenea, se mai observa o creștere a mărimii crestei de val cât și o adâncire o golului de val odată cu creșterea unghiului de înclinare. Suprafața liberă numerică a fost generată ca iso-suprafață a fracției volumice apă-aer egală cu 0.5.

Figura 5.8. Suprafața liberă- comparație între profilul drept și înclinat spre lateral

Figura 5.9. Suprafața liberă - comparație între profilul drept și înclinat spre lateral

În figura 5.13 se prezintă evoluția suprafeței libere în raport cu unghiul de înclinare al profilului spre aval. Se observă că odată cu creșterea unghiului de înclinare crește amplitudinea primului val generat de profil.

Figura 5.10. Suprafața liberă - comparație între profilul drept și înclinat spre aval

În figura 5.14 se prezintă evoluția suprafeței libere în raport cu unghiul de înclinare al profilului spre amonte. Se observă că amplitudinea primului val generat de profil scade odată cu creșterea unghiului de înclinare, deoarece liniile de curent sunt conduse descendent, similar joncțiunii de la baza profilului. Dacă în cazul profilului vertical drept a doua creastă de val este proeminentă, aceasta scade în amplitudine pe masură ce unghiul dintre placă și profil crește.

Figura 5.11. Suprafața liberă - comparație între profilul drept și înclinat spre amonte

Se calculează coeficienții de rezistență la înaintare și se prezintă în figura 5.15 precum și în tabelul 5.1 împreuna cu eroarea relativă în raport cu profilul vertical drept. Se observă o scădere de până la 10% a coeficientului total în cazul înclinării spre lateral și o scădere a acestuia de până la 55% în cazul înclinării în planul diametral amonte și aval.

5.4.2.Influența adâncimii

În cazul în care frontiera de jos este foarte apropiată de nivelul suprafeței libere, se consideră a fi curgere în acvatorii cu adâncime limitată. În această situație parametrul principal care caracterizează curgerea este numărul froude calculat pe baza adâncimii apei, Fnh. S-au considerat patru rapoarte între adâncimea apei și coarda profilului:1, 0,75, 0,50 și 0,25. Este de așteptat ca atunci când se modifică nivelul suprafeței libere, că prezența plăcii să influențeze semnificativ dezvoltarea curgerii. Cu cât adâncimea apei scade, cu atât crestele valurilor cresc, eventual până la spargere. Pe suprafața liberă simulată numeric, figura 5.16, se observă linii intrerupte ale contururilor, ceea ce înseamnă că s-a îndeplinit condiția de turbulență.

Figura 5.13. Elevarea valului în raport cu suprafața liberă calmă

a) h=1m, b) h=0,75m, c) h=0,5m, d) h=0,25m.

La numere Frh mici (Frh=0,16), amplitudinile valurilor dezvoltate este relativ mică iar influența siajului asupra joncțiunii nu este evidentă. Pe de alta parte, se observă interacțiuni majore la Frh=0,369 (corespondentul adâncimii celei mai mici), unde valurile formate au crestele foarte subțiri și inalte. Rzultatele simulărilor numerice prezintă zone de recirculare începând cu variațiile bruște ale suprafeței libere.

5.4.3.Influența vitezei

Pentru studiul influentei vitezei au fost considerate cinci numere Froude, de la 0,16 la 0,48, unde numărul Froude s-a calculat pe baza lungimii corzii profilului. La numere Froude mici (0,16), suprafața liberă prezintă valuri de mici amplitutidini, aproape insesizabile. La Fr=0,32 sistemul de valuri generat de prezența profilului este similar cu sistemul de valuri Kelvin. La Fr=0,48, datorită fenomenului de blocaj și a separărilor de fluid, a doua creastă de val se sparge și este purtată de profil inspre amonte. (Figura 5.18)

Figura 5.14. Deformarea suprafeței libere: de la stânga la dreapta: Fn=0,16, Fn=0,32 Fn=0,48.

În figura 5.19 sunt prezentați coeficienții de rezistență la înaintare. Pe abscisa este numărul Froude, iar pe ordonată sunt valorile coefienților. Se observă ca până la Fr=0,32, coeficienții totali și cei de vâscozitate scad usor, ca apoi sa prezinte o usoara crestere. La viteze mici profilul are suprafata imersa cea mai mare, odata cu cresterea vitezei scade suprafata udata a profilului. Acest lucru explică scăderea coeficienților. Dar, odată cu creșterea vitezei, se amplifică desprinderile și mișcările turbulente, crește și componenta de presiune, conducând la o creștere a coeficientilor rezistentei la înaintare. Se mai observă faptul că la numere Froude mici predomină componența de vâscozitate, pe când la numere Froude mari, componența de presiune devine semnificativă.

Figura 5.15. Variația coeficienților de rezistență pe profil

Capitolul 6. Concluzii generale

Studiile realizate în acord cu obiectivele stiințifice ale tezei de doctorat au vizat analiza curgerii în jurul joncțiunii formată dintr-o placă și un profil hidrodinamic cu aplicații practice în hidrodinamica navală. Pe baza concluziilor parțiale prezentate la finalul fiecărui capitol, este reliefată sumativ o serie de concluzii generale, după cum urmează:

> A fost descrisă teoretic și implementată o procedură completă de determinare a erorilor numerice și experimentale având la baza metodologia ASME V&V 20 (2009), de verificare și validare a calculelor numerice, și ITTC (2008) pentru determinarea erorilor și incertitudinilor experimentale;

> A fost stabilită o metodologie de calcul și a schemelor numerice utilizate în studiul curgerii vâscoase fără suprafață liberă în jurul joncțiunilor:

- Au fost efectuate calcule pentru curgerea pe placă plană și curgerea în jurul unui profil hidrodinamic, NACA0012, iar rezultatele au fost verificate și validate cu rezultate din literatura de specialitate. A fost identificat și utilizat modelul de turbulență Spalart Allmaras ca fiind cu rezultate bune în studiul sistematic al curgerii în jurul joncțiunilor imersate fără influența suprafeței libere.

- A fost prezentat un studiu numeric sistematic al curgerii în jurul joncțiunilor și au fost studiate infuența factorilor ca înclinarea profilului, curbura plăcii de bază sau viteza curentului asupra curgerii în jurul joncțiunii dintre un profil hidrodinamic și o placă. Au fost prezentate rezultatele pentru înclinarea profilului pe 3 direcții cu câte trei pași de unghi,15, 30 și 45 de grade, montați pe o placă de bază plană, concavă sau convexă, (la 4 raze de curbură), la trei numere Reynolds, 10⁶, 5x10⁶ și 10⁷.

- De asemenea, s-a efectuat și un studiu pentru identificarea indexului de convergență a grilei, sau așa cum mai este numit un studiu al erorilor și incertitudinilor de discretizare. S-a observat că atât calitativ, cât și cantitativ, grilele utilizate, dar mai ales grila fină utilizată conduce la obținerea de rezultate realistice. Drept urmare,se poate considera că rezultatele numerice ale studiului sistematic au un grad ridicat al nivelul de incredere.

> A fost stabilită o metodologie de calcul a curgeri vâscoase cu suprafață liberă în jurul profilelor hidrodinamice;

A fost efectuat și prezentat experimentul în bazinul de carene pe un model NACA 0012, la 4 pescaje și 12 viteze pentru care au fost studiate evoluția rezistenței la înaintare și elevația suprafeței libere pe modelul experimental;

> Au fost efectuate calcule numerice iar rezultatele au fost verificate și validate cu rezultatele experimentale. Modelul de turbulență cu care s-au efectuat calculele cu suprafață liberă a fost $k - \omega$ SST.

➢ A fost prezentat un studiu numeric sistematic al curgerii în jurul joncțiunilor și au fost studiate infuența factorilor ca înclinarea profilului, viteza curentului și influența adâncimii asupra curgerii în jurul joncțiunii dintre un profil hidrodinamic și o placă plană. Au fost prezentate rezultatele pentru înclinarea profilului pe 3 direcții cu câte trei pași de unghi,15, 30 și 45 de grade, montați pe o placă de bază plană. De asemenea, s-a efectuat și un studiu asupra influenței vitezei la cinci numere Froude, de la 0,16 la 0,48 pentru profilul vertical drept. Iar pentru studiul influenței adâncimii apei, s-a traslatat suprafața liberă pe verticală în diverse poziții față de joncțiunea dintre placă și profil iar rezultatele au fost prezentate.

S-a observat ca atât calitativ, cât și cantitativ grilele utilizate au condus la obținerea de rezultate realistice cu un grad ridicat al nivelul de incredere.

În urma analizei rezultatelor numerice ale studiilor sistematice cu și fără suprafață liberă se recomandă ca din punct de vedere hidrodinamic montarea profilului pe corpul navei să se faca la un unghi mai mic de 15° în raport cu direcția normală pe învelișul navei, înclinat spre

amonte sau aval astfel încât potcoava de vârtejuri să fie diminuată ca intensitate iar valoarea rezistenței la înaintare a profilului cât și cea indusă învelișului în economia generală sa fie minimă.

Capitolul 7. Contribuții personale la dezvoltarea cunoașterii în domeniu și perspective

Cercetarea este una ancorată în contextul actual mondial, pornită de la nevoia armatorilor și a proiectanților navali de a scădea emisiile de gaze cu efect de seră ca răspuns la măsura impusă de Organizația Maritimă Internațională. Drept urmare, originalitatea cercetării și a studiilor efectuate, împreună cu obiectivele stiințifice asumate ale tezei de doctorat se materializează printr-o serie de elemente de noutate, care sporesc valoarea științifică a studiilor de doctorat.

Contribuțiile originale ale autorului tezei de doctorat pot fi sintetizate, după cum urmează:

> A fost propusă și utilizată o metodologie completă pentru validarea unei simulari numerice prin determinarea erorilor numerice și experimentale;

➢ A fost realizat un studiu sistematic la scară naturală a unui profil hidrodinamic, NACA 0012 în bazinul de carene al Facultății de Arhitectură navală, studiul făcând parte dintr-un grant de cercetare IDEI 790.

➢ A fost elaborată şi validată o metodologie pentru un studiu complex asupra curgerii fără suprafață liberă în jurul joncțunilor, prin înclinarea cu 3 paşi de unghi, lateral, amonte şi aval, precum şi curbarea plăcii cu 4 raze de curbură, la 3 numere Reynolds;

A fost elaborată și validată o metodologie de studiu asupra curgerii cu suprafață liberă în jurul joncțiunilor prin înclinarea cu 3 pași de unghi, lateral, amonte și aval;

> Studiile au condus la recomandarea ca apendicele hidrodinamic să fie montat pe suprafețe curbe, asimilate corpului navei, cu maxim 15° față de direcția normală pe suprafața curbată și cu înclinare spre amonte-aval în vederea scăderii rezistenței la înaintare proprii dar si a diminuării evoluției structurilor turbulente.

În ceea ce privesc perspectivele care rezidă din studiile prezentate în cadrul tezei de doctorat se enumeră:

Studiul curgerii în jurul joncțiunii dintre o placă și un profil cu aceleași configurații geometrice dar în cazul în care placa suport penetrează suprafața liberă iar profilul submers este paralel cu aceasta;

Studiul curgerii în jurul joncțiunilor cu unghi de atac pentru a studia și influența forței portante asupra curgerii cu / fără suprafață liberă în jurul joncțiunilor;

Studii privind curgerea în jurul unui profil montat pe carena unei nave, în amonte și aval de propulsor pentru a se evalua efectul direct asupra propulsorului.

Bibliografie:

[1].United Nations Framework Convention on Climate Change, "Kyoto Protocol Reference Manual", 2008.

[2].International Maritime Organization, "Second IMO GHG Study", Phase1, MEPC 59/INF.10, 2008/2009.

[3].International Maritime Organization, "Second IMO GHG Study", Phase2, MEPC 59/INF.10, 2009.

[4].International Maritime Organization, "Study of Greenhouse Gas emissions from Ships", 2000.

[5].International Maritime Organization, MEPC, Circ. 471, 2005.

[6].International Maritime Organization, MEPC 62nd session, 11-15 July, 2011.

[7].Ungureanu, C., Marcu, O., Ionas, O., *"Energy efficiency in ship design"*, Annals of "Dunarea de Jos" University Galati. Fascicle XI, Shipbuilding, 2013; pp. 61-68.

[8].AEA Energy & Environment, "Green-house gas emissions from shipping: trends, projections and abatement potential", Report, 2008.

[9].Det Norske Veritas, "Assessment of measures to reduce future CO2 emissions from shipping", 2010.

[10].MAN, Diesel-electric Propulsion Plants, 2012.

[11].Peter Naaijen & Vincent Koster, *Performance of auxiliary wind propulsion for merchant ships using kite*, International Conference on Marine Research and Transportation, 2007.

[12].Wubbo J. Ockels, Richard Ruiterkamp, Bas Lansdorp, *Ship propulsion by Kites combining energy production by Laddermill principle and direct kite propulsion*, Kite Sailing Symposium, 2006.

[13].Michael Erhard and Hans Strauch, *Control of Towing Kites for Seagoing Vessels*, IEEE Transactions on Control Systems Technology, Volume: 21, 2013, Issue: 5.

[14].Jorg Sommer, Ship propulsion by renewable energies available at sea, MARIN, 2013.

[15].G. Wursig, B. Scholz, "MSC.285(86) and Code for gas-fuelled ships (IGF-Code)technical challenges and perspective", Germanisher Lloyd, 2011.

[16].Jan Øivind Svardal & Friedrich Mewis, *Three Years of Experience with the Mewis Duct– A Contribution to Ship Efficiency*, International Conference on Ship Efficiency, 2011.

[17].Johan H. de Jong, A Framework for Energy Saving Device (ESD) Decision Making, MARIN, International Conference on Ship Efficiency, 2011.

[18].John Carlton, *Marine Propellers and Propulsion*, Elsevier, 2nd edition, 2007.

[19].Manen, J.D. van, Oossanen, P. van, *Propulsion. In Principles of Naval Architecture*, (ed. E.V. Lewis), 1988, Society of Naval Architects and Marine Engineers, New Jersey.

[20].Prantl L., *In Verhanlugen des dritten internationalen Mathematiker-Kongresses in Heidelberg,* 1904, traducere de J.A.K. Ackroyd, B.P. Axcell, A.I. Ruban, Butterwoth-Heinemann, Oxford, UK, 2001.

[21].Baker, C.J., *The Laminar Horseshoe Vortex*, Journal of Fluid Mechanics, 1979, vol.95.

[22].Baker, C.J., *The Turbulent Horseshoe Vortex*, Journal of Wind Engineering and Industrial Aerodynamics, 1980, vol.18.

[23].Dickinson, S.C., *Time dependent flow visualization in the separated region of an appendage-flat plate junction*, Experiments in Fluids 6,1987,141.

[24].Mehta RD.. *Effect on a wing nose shape on the flow in a wing/body junction* Aerosp.J.1984, 88:456–60.

[25].Rood EP., The governing influence of the nose radius on the unsteady effects of large scale flow structure in the turbulent wing and plate junction flow. In ASME Forum on

Unsteady Flow, FGD, ed. PH Rothe, 1984 c, 15:7–9. New York: Am. Soc. Mech. Eng., Fluids Eng. Div.

[26].Fleming J, Simpson RL, Devenport WJ., *An Experimental Study of a Turbulent Wing-Body Junction and Wake Flow.* VPI&SU Report VPI-AOE-179, Va. Polytech. Inst. State Univ., Blacksburg, Va, 1991.

[27].Fleming J, Simpson RL, Devenport WJ., *An experimental study of a turbulent wing- body junction flow*. Exp. Fluids, 1993, 14:366–78.

[28].Roach PE, Turner JT., *Secondary loss generation by gas turbine support struts*. Int. J. Heat Fluid Flow, 1985, 6:79–88.

[29].Ungureanu, C., Lungu, A., *Numerical Simulation of the Turbulent Flow around a Strut Mounted on a Plate*, Numerical Analysis and Applied Mathematics, AIP Proceedings, Melville New York, Vol. 1168, 2009, pp. 689-692.

[30].Ungureanu, C., Lungu, A., *Numerical Investigation of the Wing-Body Junction Flows,* Annals of "Dunarea de Jos" University Galati. Fascicle XI, Shipbuilding, 2009, pp. 17-23.

[31].Ungureanu, C., Lungu, A., *Numerical Studies on Free Surface Flow around a Hydrofoil Mounted on a Plate*, Numerical Analysis and Applied Mathematics, AIP Proceedings, Melville New York, Vol. 1281, 2010, pp. 115-118.

[32].Shizawa T, Honami S, Yamamoto M. *Experimental study of horseshoe vortex at wing/body junction with attack angle by triple hot-wire*. 1996, AIAA-96-0323. Presented at Am. Inst. Aeronaut. Astronaut. Aerosp. Sci. Meet., 34th, Reno.

[33].Ahmed A, Khan MJ. *Effect of sweep on wing-body juncture flows*, 1995, AIAA-95-0868. Presented at Am. Inst. Aeronaut. Astronaut. Aerosp. Sci. Meet., 33rd, Reno.

[34].Bernstein L, Hamid S., *On the effect of a strake-like junction fillet on the lift and drag of a wing*, Aerosp. J., 1996,100:39–52.

[35].Metcalf B., Longo J., Ghosh S., Stern F., *Unsteady free-surface wave-induced boundarylayer separation for a surface-piercing NACA 0024 foil: Towing tank experiments*, Journal of Fluids and Structures 22, 2006, 77–98.

[36].Ungureanu, C., *Towing Tank Experiments for a Surface Piercing NACA 0012 Hydrofoil,* Annals of "Dunarea de Jos" University Galati. Fascicle XI, Shipbuilding, 2011, pp. 5-10.

[37].Ovidiu Ionas, *Nave tehnice*, Note de curs, Galati 2012.

[38].Gui L., Longo J., Metcalf B., Shao J., Stern F., *Forces, moment and wave pattern for surface combatant in regular head waves*, 2001.

[39].Dan Obreja si Leonard Domnisoru, *Theoretical and experimental investigation on the total resistance of an underwater ROV remotely operating vehicle*, International Congress of International Maritime Association of the Mediterranean, 2011.

[40].Longo J., Huang H.P., Stern F., *Solid/free-surface juncture boundary layer and wake*, Experiments in Fluids 25, 1998, 283—297.

[41].Kang D.H., Longo J., Marquardt M., Stern F., *Solid/free-surface juncture boundary layer and wake with waves*, 27th Symposium on Naval Hydrodynamics Seoul, Korea 5-10 October 2008.

[42]. Thwaites, B., `` Incompressible Aerodynamics," Oxford University Press, 1960.

[43].Kwak D., Rogers S.E., Kaul U.K.,Chang J.L.C., *A Numerical Study of Incompressible Juncture Flows*, NASA Technical memorandum, 1986.

[44].Visbal, M. R., "*Structure of Laminar Juncture Flows*", AIAA Journal, Vol. 29, 1991, No. 8, pp. 1273-1282.

[45].Hung C., Sung C., and Chen C., "*Computations of Saddle Point of Attachment*", AIAA Journal, Vol. 30, No. 6, 1992, pp. 1561-1569.

[46].Coon M.D., Tobak M., "*Experimental Study of Saddle Point of Attachment in Laminar Juncture Flow*", AIAA Journal, 1995, 33(12):2288-2292.

[47].Sumer B.M., Cristiansen N., Fredsoe J., *The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves*, J. Fluid Mech., vol. 332, 1997, pp. 41–70.

[48].Hara Y., Higuchi H., Kawamura T., Hayashi T., *A Computational Study on the Flow Structure around a Yawed Circular Cylinder- A Consideration on the Structure near the Upstream Juncture*, J of Wind Engineering, 2003.

[49].Muzzammil M. si Gangadhariah T., *The mean characteristics of horseshoe vortex at a cylindrical pier*, Journal of Hydraulic Research Vol. 41, No. 3, 2003, pp. 285–297.

[50].Besir S., Adil Ozturk N., H[°]useyin A., *Horseshoe vortex system in the vicinity of the vertical cylinder mounted on a flat plate*, Flow Measurement and Instrumentation 18, 2007, 57–68.

[51].Alin N., Fureby C., *Large Eddy Simulation of Junction Vortex Flows*, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-668, 2008, Reno, Nevada.

[52].Frederich O., Wassen E., Thiele F., *Prediction of the Flow Around a Short Wall-Mounted Finite Cylinder using LES and DES*, Journal of Numerical Analysis, Industrial and Applied Mathematics, (JNAIAM), vol. 3, no. 3-4, 2008, pp. 231-247.

[53].Lungu A., Ungureanu C., *"Numerical Study of a 3-D Juncture Flow"*, Proceedings of the Conference on Numerical Analysis and Applied Mathematics, AIP Proceedings, Melville New York, Vol. 1048, 2008, pp. 839-842.

[54].Guillermo P.S., Thorsten S., Jochen F., Michael K., Wolfgang R., *Large Eddy Simulations and Experiments of Flow Around Finite-Height Cylinders*, Flow Turbulence Combust, 2010, 84:239–275.

[55].Wang J.M., Bi W.T., Wei Q.D., *Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow*, Exp Fluids, 2009, 46:1093–1104.

[56].Ming Z., Liang C., Tongming Z., *Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length*, Journal of Fluids and Structures 25, 2009, 831–847.

[57].Besir S., Adil Ozturk N., *Behaviour of flow at the junction of cylinder and base plate in deep water*, Measurement 42, 2009, 225–240.

[58].AEA Energy & Environment, "Green-house gas emissions from shipping: trends, projections and abatement potential", Report, 2008.

[59].Det Norske Veritas, "Assessment of measures to reduce future CO₂ emissions from shipping", 2010.

[60].MAN, Diesel-electric Propulsion Plants, 2012.

[61].Peter N., Vincent K., *Performance of auxiliary wind propulsion for merchant ships using kite*, International Conference on Marine Research and Transportation, 2007.

[62].Wubbo J., Ockels RFlemingichard R., Bas Lansdorp, *Ship propulsion by Kites combining energy production by Laddermill principle and direct kite propulsion,* Kite Sailing Symposium, 2006.

[63].Michael E., Hans S., *Control of Towing Kites for Seagoing Vessels*, IEEE Transactions on Control Systems Technology, Volume: 21, 2013, Issue: 5.

[64].Jorg S., Ship propulsion by renewable energies available at sea, MARIN, 2013.

[65].Wursig G., Scholz B., *"MSC.285(86) and Code for gas-fuelled ships (IGF-Code)-technical challenges and perspective*", Germanisher Lloyd, 2011.

[66].Jan Øivind Svardal & Friedrich Mewis, *Three Years of Experience with the Mewis Duct– A Contribution to Ship Efficiency*, International Conference on Ship Efficiency, 2011;

[67].Johan H. de Jong, A Framework for Energy Saving Device (ESD) Decision Making, MARIN, International Conference on Ship Efficiency, 2011.

[68].John C., *Marine Propellers and Propulsion*, Elsevier, 2nd edition, 2007.

[69].Manen, J.D. van, Oossanen, P. van, *Propulsion. In Principles of Naval Architecture*, (ed. E.V. Lewis), 1988, Society of Naval Architects and Marine Engineers, New Jersey.

[70].Prantl L., *In Verhanlugen des dritten internationalen Mathematiker-Kongresses in Heidelberg,* 1904, traducere de J.A.K. Ackroyd, B.P. Axcell, A.I. Ruban, Butterwoth-Heinemann, Oxford, UK, 2001.

[71].Baker C.J., The Laminar Horseshoe Vortex, Journal of Fluid Mechanics, vol.95, 1979.

[72].Baker C.J., *The Turbulent Horseshoe Vortex*, Journal of Wind Engineering and Industrial Aerodynamics, vol.18, 1980.

[73].Dickinson S.C., *Time dependent flow visualization in the separated region of an appendage-flat plate junction*, Experiments in Fluids 6, 1987,141.

[74].Mehta R.D., *Effect on a wing nose shape on the flow in a wing/body junction* Aerosp.J. 1984, 88:456–60.

[75].Rood E.P., *The governing influence of the nose radius on the unsteady effects of large scale flow structure in the turbulent wing and plate junction flow*. In ASME Forum on Unsteady Flow, FGD, ed. PH Rothe, 1984c, 15:7–9. New York: Am. Soc. Mech. Eng., Fluids Eng. Div.

[76].Fleming J., Simpson R.L., Devenport WJ. 1991. *An Experimental Study of a Turbulent Wing-Body Junction and Wake Flow*. VPI&SU Report VPI-AOE-179, Va. Polytech. Inst. State Univ., Blacksburg, Va.;

[77].Fleming J, Simpson RL, Devenport WJ. 1993. *An experimental study of a turbulent wing-body junction flow*. Exp. Fluids 14:366–78;

[78].Roach PE, Turner JT. 1985. *Secondary loss generation by gas turbine support struts*. Int. J. Heat Fluid Flow. 6:79–88

[79].Ungureanu, C., Lungu, A., *Numerical Simulation of the Turbulent Flow around a Strut Mounted on a Plate*, Numerical Analysis and Applied Mathematics, AIP Proceedings, Melville New York, Vol. 1168, pp. 689-692, 2009;

[80].Ungureanu, C., Lungu, A., *Numerical Investigation of the Wing-Body Junction Flows,* Annals of "Dunarea de Jos" University Galati. Fascicle XI, Shipbuilding, pp. 17-23, 2009

[81].Ungureanu, C., Lungu, A., *Numerical Studies on Free Surface Flow around a Hydrofoil Mounted on a Plate*, Numerical Analysis and Applied Mathematics, AIP Proceedings, Melville New York, Vol. 1281, pp. 115-118, 2010;

[82].Shizawa T, Honami S, Yamamoto M. 1996. *Experimental study of horseshoe vortex at wing/body junction with attack angle by triple hot-wire*. AIAA-96-0323. Presented at Am. Inst. Aeronaut. Astronaut. Aerosp. Sci. Meet., 34th, Reno;

[83].Ahmed A, Khan MJ. 1995. *Effect of sweep on wing-body juncture flows*. AIAA-95-0868. Presented at Am. Inst. Aeronaut. Astronaut. Aerosp. Sci. Meet., 33rd, Reno

[84].Bernstein L, Hamid S. 1996, *On the effect of a strake-like junction fillet on the lift and drag of a wing*, Aerosp. J. 100:39–52;

[85].B. Metcalf, J. Longo, S. Ghosh, F. Stern, *Unsteady free-surface wave-induced boundarylayer separation for a surface-piercing NACA 0024 foil: Towing tank experiments*, Journal of Fluids and Structures 22 (2006) 77–98

[86].Ungureanu, C., *Towing Tank Experiments for a Surface Piercing NACA 0012 Hydrofoil,* Annals of "Dunarea de Jos" University Galati. Fascicle XI, Shipbuilding, pp. 5-10, 2011;

[87].Ovidiu Ionas, *Nave tehnice*, Note de curs, Galati 2012;

[88].L.Gui, J. Longo, B. Metcalf, J Shao, F Stern, *Forces, moment and wave pattern for surface combatant in regular head waves*, 2001;

[89].Dan Obreja si Leonard Domnisoru, *Theoretical and experimental investigation on the total resistance of an underwater ROV remotely operating vehicle*, International Congress of International Maritime Association of the Mediterranean, 2011;

[90].J. Longo, H. P. Huang, F. Stern, *Solid/free-surface juncture boundary layer and wake*, Experiments in Fluids 25 (1998) 283—297;

[91].D.H. Kang , J. Longo, M. Marquardt , F. Stern, *Solid/free-surface juncture boundary layer and wake with waves*, 27th Symposium on Naval Hydrodynamics Seoul, Korea 5-10 October 2008;

[92].Thwaites, B., `` Incompressible Aerodynamics," Oxford University Press, 1960;

[93].D. Kwak, S E Rogers, Uk Kaul, J LC Chang, *A Numerical Study of Incompressible Juncture Flows*, NASA Technical memorandum, 1986;

[94].Visbal, M. R., "*Structure of Laminar Juncture Flows*", AIAA Journal, Vol. 29, No. 8, 1991, pp. 1273-1282;

[95].Hung, C, Sung, C. and Chen, C., "*Computations of Saddle Point of Attachment*", AIAA Journal, Vol. 30, No. 6, June 1992, pp. 1561-1569;

[96].Coon, M.D., Tobak, M., "*Experimental Study of Saddle Point of Attachment in Laminar Juncture Flow*", AIAA Journal, 33(12):2288-2292, 1995;

[97].Sumer BM, Cristiansen N., Fredsoe J, *The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves*, J. Fluid Mech. (1997), □ vol. 332, pp. 41–70;

[98].Y Hara, H Higuchi, T Kawamura, T Hayashi, A Computational Study on the Flow Structure around a Yawed Circular Cylinder- A Consideration on the Structure near the Upstream Juncture, J of Wind Engineering, 2003;

[99].Muzzammil M. si Gangadhariah T., *The mean characteristics of horseshoe vortex at a cylindrical pier*, Journal of Hydraulic Research Vol. 41, No. 3 (2003), pp. 285–297

[100].Besir Sahin, N. Adil Ozturk, H[°]useyin Akilli, *Horseshoe vortex system in the vicinity of the vertical cylinder mounted on a flat plate*, Flow Measurement and Instrumentation 18 (2007) 57–68;

[101].N.Alin, C. Fureby, *Large Eddy Simulation of Junction Vortex Flows*, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-668, 2008, Reno, Nevada;

[102].O. Frederich, E. Wassen & F. Thiele, *Prediction of the Flow Around a Short Wall-Mounted Finite Cylinder using LES and DES*, Journal of Numerical Analysis, Industrial and Applied Mathematics, (JNAIAM), vol. 3, no. 3-4, , pp. 231-247, 2008;

[103].Lungu, A., Ungureanu, C., *"Numerical Study of a 3-D Juncture Flow"*, Proceedings of the Conference on Numerical Analysis and Applied Mathematics, AIP Proceedings, Melville New York, Vol. 1048, pp. 839-842, 2008;

[104].Guillermo Palau-Salvador, Thorsten Stoesser, Jochen Fröhlich, Michael Kappler, Wolfgang Rodi, *Large Eddy Simulations and Experiments of Flow Around Finite-Height Cylinders*, Flow Turbulence Combust (2010) 84:239–275;

[105].J. M. Wang, W. T. Bi, Q. D. Wei, *Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow*, Exp Fluids (2009) 46:1093–1104;

[106].Ming Zhao, Liang Cheng, Tongming Zhou, *Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length*, Journal of Fluids and Structures 25 (2009) 831–847;

[107].Besir Sahin, N. Adil Ozturk, *Behaviour of flow at the junction of cylinder and base plate in deep water*, Measurement 42 (2009) 225–240;

[108].Tuan, V.M., Lungu, A., Ungureanu, C., *"Numerical Simulation of the 3D Flow Around an Inclined Circular Cylinder Mounted on a Curved Plate"*, Annals of "Dunarea de Jos" University Galati. Fascicle XI, Shipbuilding, pp. 5-12, 2012;

[109].A Stanbrook, *Experimental Observation of Vortices in Wing-Body Junctions*, R.A.E. Report Aero. 2589, 1957;

[110].MCMAHON H., HUBBARTJ,. & KUBENDRALN, *Mean velocities and Reynolds stresses in a juncture flow*. NASA Contractor Rep. 3605, 1982;

[111].Fleming J, Simpson RL, Devenport WJ. 1991. *An Experimental Study of a Turbulent Wing-Body Junction and Wake Flow*. VPI&SU Report VPI-AOE-179, Va. Polytech. Inst. State Univ., Blacksburg, Va.;

[112].Devenport WJ, Simpson RL. 1990a. *Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction*. J. Fluid Mech. 210:23–55

[113].Devenport WJ, Simpson RL. 1990b. *An Experimental Investigation of the Flow Past an Idealized Wing-Body Junction*. VPI&SU Rep. VPI-AOE-172, Va. Polytech. Inst. State Univ., Blacksburg, Va;

[114].Devenport WJ, Simpson RL. 1992. *Flow past a wing-body junction: experimental evaluation of turbulence models*. AIAA J.30:873–81;

[115].Fleming J, Simpson RL, Devenport WJ. 1993. *An experimental study of a turbulent wing-body junction flow*. Exp. Fluids 14:366–78;

[116].Olcmen MS, Simpson RL. 1994. *Influence of wing shapes on surface pressure fluctuations at wing-body junctions*. AIAA J. 32:6–15;

[117].Olcmen MS, Simpson RL. 1995. *An experimental study of three-dimensional pressuredriven turbulent boundary layer.* J. Fluid Mech. 290:225–62;

[118].Olcmen MS, Simpson RL. 1996a. *Experimental transport-rate budgets in complex three- dimensional turbulent flows at a wing/body junction*. AIAA-96-2035. Presented at Am. Inst. Aeronaut. Astronaut. Fluid Dyn. Conf., 27th, New Orleans;

[119].Olcmen MS, Simpson RL. 1996b. *Theoretical and experimental pressure-strain comparison in a pressure-driven three-dimensional turbulent boundary layer*. AIAA-96-2141. Presented at Am. Inst. Aeronaut. Astronaut. Theor. Fluid Mech. Meet., 1st, New Orleans;

[120].Olcmen MS, Simpson RL. 1997a. *Experimental evaluation of turbulence diffusion models in complex 3-D flow near a wing/body junction*. AIAA-97-0650. Presented at Am. Inst. Aeronaut. Astronaut. Aerosp. Sci. Meet., 35th, Ren;

[121].Olcmen MS, Simpson RL. *Some features of a turbulent wing-body junction vortical flow*, International Journal of Heat and Fluid Flow 27 (2006) 980–993;

[122].Parneix S, Durbin PA, Behnia M. *Computation of 3d turbulent boundary layers using the v2-f model*. Flow, Turbulence and Combustion 60: 19–46, 1998;

[123].Olcmen MS, Simpson RL. *Experimental transport-rate budgets in complex 3-D turbulent flow near a wing/body junction*, International Journal of Heat and Fluid Flow 29 (2008) 874–890

[124].S.C. Dickinson, *Time dependent flow visualization in the separated region of an appendage-flat plate junction*, Experiments in Fluids, 1988;

[125].D.A. Jones si D.B. Clarke, *Simulation of a Wing-Body Junction Experiment using the Fluent Code*, DSTO –TR-1731, 2005;

[126].Khalil A. Kairouz, Hamid R. Rahai, Yen si Hsu (2007), *Turbulent junction flow with an upstream ribbed surface*, International Journal of Heat and Fluid Flow 26 (2005) 771–779;

[127].Song Fu, Zhixiang Xiao, Haixin Chen, Yufei Zhang, Jingbo Huang, *Simulation of wing-body junction flows with hybrid RANS/LES methods*, International Journal of Heat and Fluid Flow 28 (2007) 1379–1390;

[128].Joongcheol Paik, Cristian Escauriaza, and Fotis Sotiropoulos, *On the bimodal dynamics of the turbulent horseshoe vortex systemin a wing-body junction*, PHYSICS OF FLUIDS 19, 045107, 2007;

[129].M. M. Ambrogi, R. Broglia, A. Di Mascio, *Numerical Simulation of a flow around an America's Cup class Keel*, Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, July 6-11, 2008;

[130].Liu Zhihua, Xiong Ying, Tu Chengxu, *Numerical simulation and control of horseshoe vortex around an appendage–body junction*, Journal of Fluids and Structures, <u>Volume 27</u>, <u>Issue 1</u>, January 2011, Pages 23-42;

[131].A.M. Levchenya, E.M. Smirnov, V.D. Goryachev, *RANS-based numerical simulation* and visualization of the horseshoe vortex system in the leading edge end wall region of a symmetric body, International Journal of Heat and Fluid Flow 31 (2010) 1107–1112;

[132].Renato Paciorri, Aldo Bonfiglioli, Andrea di Mascio and Bernardo Favini, *RANS simulations of a junction flow*, International Journal of Computational Fluid Dynamics, Vol. 19, No. 2, February 2005, 179–189;

[133].Fabien Gand, *Dynamique des 'ecoulements de jonction en r'egime turbulent*, These de doctorat de l'Universit'e Pierre et Marie Curie, 2011;

[134].Gand F., Brunet V., Deck S., *Experimental and Numerical Investigation of a Wing-Body Junction Flow*, AIAA Journal, vol 50, no 12, pp. 2711-2719., 2012;

[135].Hussein H.J. si Martinuzzi R.J., *Energy balance for turbulent flow around a surface mounted cube placed in a channel*, Physics of Fluids 8, 764, (1996);

[136].Giancarlo Alfonsi, Carlo Restano, Leonardo Primavera, *Coherent structures of the flow around a surface-mounted cubic obstacle in turbulent channel flow*, Journal of Wind Engineering and Industrial Aerodynamics 91 (2003) 495–511;