Arată înregistrarea sumară a articolului

dc.contributor.authorMiholcă, Constantin
dc.contributor.authorNicolau, Viorel
dc.contributor.authorMunteanu, Cristian
dc.contributor.authorMihăilescu, Dănuţ
dc.date.accessioned2016-01-20T13:00:53Z
dc.date.available2016-01-20T13:00:53Z
dc.date.issued2008
dc.identifier.urihttp://10.11.10.50/xmlui/handle/123456789/3903
dc.descriptionThe Annals of "Dunarea de Jos" University of Galatien_US
dc.description.abstractA neural control technique, applied to the MAG (Metal-Active Gas) welding process, is presented in the paper. The static nonlinear model of welding process is based on experimental determinations. The geometric parameters of the welding beam are considered as output parameters of the MAG process (Bs, a, p), and they are measured for different step-variations of the input parameters (Ve, Vs, Ua). The analysis of the output dynamics was further used to model the MAG welding process using a 3- layer neural network with 6 hidden-layer neurons. In order to reject perturbations and cancel the stationary error, an error compensator was used, which consists of the reverse dynamic model connected to a proportional integrator controller. Simulation results for the multivariable neural controller are presented.en_US
dc.language.isoenen_US
dc.publisher"Dunarea de Jos" University of Galatien_US
dc.subjectwelding processen_US
dc.subjectintelligent controlen_US
dc.subjectnonlinear modelen_US
dc.subjectneural networken_US
dc.subjectreverse dynamic modelen_US
dc.titleMultivariable Intelligent Control for M.A.G. Welding Processen_US
dc.typeArticleen_US


Fișiere la acest articol

Thumbnail

Acest articol apare în următoarele colecții(s)

Arată înregistrarea sumară a articolului